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Abstract

In this paper we construct an analytic model of cache misses during matrix multiplication. The
analysis in this paper applies to square matrices of size2

m where the array layout function is given in
terms of a function� that interleaves the bits in the binary expansions of the row and column indices.
We first analyze the number of cache misses for direct-mapped caches and then indicate how to extend
this analysis toA -way associative caches.

The work in this paper accomplishes two things. First, we construct fast algorithms to estimate the
number of cache misses. Second, we develop theoretical understanding of cache misses that will allow
us, in subsequent work, to approach the problem of minimizing cache misses by appropriately choosing
the bit interleaving function that goes into the array layout function.

1 Introduction

As the gap between processor cycle time and main memory access time continues to widen, effective use
of the memory hierarchy becomes ever more critical to overall program performance. Caches can help
alleviate the CPU-memory gap by satisfying most memory references at close to processor speed (1 to 3
cycles). Unfortunately, programs that do not exhibit good memory reference locality cannot exploit the
potential benefits of caches.

For scientific computations that repeatedly access large data sets, good locality of reference is essential
at the algorithm level for high performance. Such locality can either betemporal, in which a single data
item is reused repeatedly, orspatial, in which a group of data items “adjacent” in space are used in temporal
proximity. High-performance dense linear algebra codes rely on good spatial and temporal locality of ref-
erence for their performance. In this paper, we focus on an analysis of matrix multiplication, the workhorse
of modern linear algebraic algorithms.

Our previous studies demonstrated an intimate relationship between the layout of the arrays in memory
and the performance of the routine [1, 2]. This early work experimentally showed the benefits of using
array layout functions based on interleaving the bits in the binary expansions of the row and column indices
of arrays. This paper complements our earlier empirical studies by providing an analytical framework for
analyzing the cache behavior of matrix multiplication in the presence of such array layout functions. Future
work will use this framework in an optimization context, to determine array layouts that minimize the
number of cache misses.

The remainder of this section provides the background of the cache analysis problem. Section 1.1
provides a brief overview of cache memory basics. Section 1.2 describes our analysis framework—both the
similarities to earlier work and the critical differences that require us to use completely different techniques.
Section 1.3 discusses array layout functions based on bit interleaving. Section 1.4 reiterates the goals of our
analysis and provides a roadmap of the remainder of the paper.

1.1 Basics of cache memory

We assume a simplified memory hierarchy that processes one memory access at a time, with no distinction
between memory reads and writes.

The structure of a single level of a memory hierarchy—called acache—is generally characterized by
three parameters:Associativity,Block size, andCapacity. Capacity and block size are in units of the
minimum memory access size (usually one byte). A cache can hold a maximum ofC bytes. However, due
to physical constraints, the cache is divided intocache frames of sizeB that containB contiguous bytes
of memory—called amemory block. The associativityA specifies the number of different frames in which
a memory block can reside. If a block can reside in any frame (i.e., A = C

B
), the cache is said to befully

associative; if A = 1, the cache isdirect-mapped; otherwise, the cache isA-way set associative.
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For a given memory access, the hardware inspects the cache to determine if the corresponding memory
element is resident in the cache. This is accomplished by using an indexing function to locate the appropriate
set of cache frames that may contain the memory block. If the memory block is resident, acache hit is said
to occur, and the cache satisfies the access after itsaccess latency. If the memory block is not resident, a
cache miss is said to occur.

From an architectural standpoint, cache misses fall into one of three classes [7].

� A compulsory miss is one that is caused by referencing a previously unreferenced memory block.
Eliminating a compulsory miss requires prefetching the data, either by an explicit prefetch operation
or by placing more data items in a single memory block.

� A reference that is not a compulsory miss but misses in a fully-associative cache with LRU replace-
ment is classified as acapacity miss. Capacity misses are caused by referencing more memory blocks
than can fit in the cache. Restructuring the program to re-use blocks while they are in cache can reduce
capacity misses.

� A reference that hits in a fully-associative cache but misses in anA-way set-associative cache is
classified as aconflict miss (or interference miss). A conflict miss to block X indicates that block X
has been referenced in the recent past, since it is contained in the fully-associative cache, but at least
A other memory blocks that map to the same cache set have been accessed since the last reference to
block X. Eliminating conflict misses requires transforming the program to change either the memory
allocation and/or layout of the two arrays (so that contemporaneous accesses do not compete for the
same sets) or the manner in which the arrays are accessed.

At the program source level, interference misses can be further subdivided based on whether the
interfering blocks come from different parts of a single array, or from different arrays. The miss is
called aself-interference miss in the former case and across-interference miss in the latter case [8].

1.2 An analysis framework

Our general model for counting cache misses follows the framework used in previous work [5], with one
significant difference. We first explain the common framework, then highlight the key difference in our
version of the problem that necessitates entirely new solution techniques.

The program fragment whose cache behavior we are trying to analyze is a perfectly nested normalized
loop with d levels of nesting, numbered1 throughd from outermost to innermost. The lower and upper
bounds of�j , the loop control variable (LCV) for loopj, are affine functions of the LCVs�1 through�j�1.
The iteration spaceIis the set of all valid combinations of LCV values that are within the bounds of the
loop nest. The notation� = [`1; : : : ; `d�1]

T denotes a generic point in the iteration spaceI. The iteration
space is also equipped with a total order<, which is the lexicographic ordering on�. The order specifies the
temporal order in which the iteration points in the iteration space are executed.

The loop accesses elements of arraysA(1) throughA(m). Array variableA(i) hasdi dimensions, with
nj being the extent of the array in thejth dimension. The data index spaceDi corresponding to arrayA(i)

is the Cartesian product[0; n1 � 1]� � � � � [0; ndi � 1].
The statements in the loop body makek references to array variables. We denote these referencesR1

throughRk . A referenceRi has two components:Ni, the name of the array referenced (so thatNi = A(j)

for 1 6 j 6 m); andFi, the index expression of the reference, which identifies the coordinates of the array
element accessed by this reference at iteration point�. The index expressionFi is constrained to be an affine
function of � in each of its components. Thus,Fi is a function from the iteration spaceIto the data index
spaceDNi

. We also assume thatRi is theith array reference made at iteration point�.
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ArrayAi has an associated layout functionLi, which is a 1-1 map fromDi to the memory address space
Z
+
0 . Applying this map to an element of an array produces the byte address of that array element.

We assume a two-level memory hierarchy, with a direct-mapped cache with block size ofB bytes and
total capacity ofC bytes (and thereforep = C=B sets). The quantitiesB andC are always powers of two
for technological reasons, so we will assume thatp = 2�. We also assume that main memory is large enough
to hold all the data referenced by the program. The functionBconverts a memory byte address address into a
memory block address (withB(a) = ba=Bc). The functionSconverts a memory block address to the cache
set to which it maps (thus,S(b) = b mod S).

Putting all of this notation together, we have the following table of objects of interest and their mathe-
matical representations.

Object Mathematical representation

An iteration point �

Theith array reference at that iteration Ri = (Aj ; Fi)

The array element accessed byRi at � ei = Aj [Fi(�)]

The byte address ofei mi = Lj(Fi(�))

The block address ofmi bi = B(Lj(Fi(�)))

The cache set to whichbi maps si = S(B(Lj(Fi(�))))

Example 1 Consider the following loop nest for matrix multiplication (the so-calledikj variant), which
will be the specific computation whose cache behavior we analyze in the remainder of this paper.

for (i = 0; i < n; i++)
for (k = 0; k < n; k++)
for (j = 0; j < n; j++)

C[i][j] = C[i][j] + A[i][k]*B[k][j];

This loop nest has depthd = 3. The LCVs are�1 = i, �2 = k, and �3 = j. The loop nest accesses
three arrays:A(1) = A, A(2) = B, andA(3) = C. Each array is two-dimensional, so thatD1 = D2 =

D3 = [0; n� 1] � [0; n� 1]. There are four array references:R1 = A[i][k], R2 = B[k][j], R3 = C[i][j]

(the read access), andR4 = C[i][j] (the write access). The index expressions of the four references are

F1 =

�
1 0 0

0 1 0

�
� �, F2 =

�
0 1 0

0 0 1

�
� �, andF3 = F4 =

�
1 0 0

0 0 1

�
� �. We defer the discussion of

the layout functions of the three arrays to later in this section.

In the remainder of the paper we will work in units of array elements rather than bytes. Given that
32 bytes is a popular block size for first-level caches in many modern machines, and that double-precision
numbers are represented with eight bytes, we will assume in this paper that memory blocks and cache blocks
hold four array elements.

The goal of cache analysis is to efficiently estimate the number of capacity and conflict misses of a given
code fragment, given the numerical value of the loop bounds, a cache configuration, and the layout functions
of the arrays. To formulate the conditions under which the referenceRi = (A; Fi) misses at iteration point
w because it was replaced by referenceRj = (B; Fj), let u = Last(w) be the most recent iteration point
that accessedbA = B(LA(Fi(w))), the block being accessed by referenceRi at iteration pointw. Let v
be an iteration point satisfyingu < v < w at which the memory blockbB = B(LB(Fj(v))) accessed by
referenceRj displaced blockbA from cache. This condition is satisfied iff

S(B(LA(Fi(w)))) = S(B(LB(Fj(v))): (1)
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Equation (1) captures bothcapacity andconflict misses, but does not distinguish between the two. (Dis-
criminating between these miss classes would require the additional ability to ascertain the hit/miss status
of the reference in a fully-associative cache.) It does not capturecompulsory misses, as such misses corre-
spond to iterationsw for whichLast(w) is not defined. We use the termreplacement misses to encompass
capacity and conflict misses. We omit compulsory misses from the scope of this paper for two reasons: they
are unavoidable misses that cannot be reduced by optimization techniques, and they need to be formulated
completely differently. It is clear that a simple strategy to count misses is through simulation of the code.
This is exactly what cache simulators do. The main drawback of simulation is its slowness: it takes time
proportional to the actual execution of the code, usually with a significant multiplicative factor (10 � 100

is typical). In the matrix multiplication example of Example 1, this time is�(n3). Our interest is in much
faster algorithms, whose existence is suggested by the regularity of the array access patterns and the limited
number of cache sets to which they map. By using these regularities to tame the potential combinatorial
explosion of cases, we will in fact demonstrate algorithms that accurately compute the number of cache
misses for the matrx multiplication example inO(max(logn; log(C=B))) time.

Previous work [5] at this point introduces two additional constraints to make the problem tractable. First,
it assumes that the layout functions are row- or column-major, which is affine in the array co-ordinates.
We will subsequently use the termcanonical layout to refer to these two layout functions. Second, it
assumes thatLast(w) can be obtained throughreuse vectors, which occurs when the array index expressions
are uniformly generated in addition to being affine in the LCVs. These two conditions keep everything
within the polyhedral model [3], which has been well-studied and for which counting algorithms are well-
known [9]. It is at this point that our work diverges from previous work.

Prior empirical evidence [4, 1, 2] suggests that alternative array layout functionssuch as Morton order [2]
provide better cache behavior than canonical layout functions for many dense linear algebra codes. Such
layout functions are described in terms of interleavings of the bits in the binary expansions of the array
co-ordinates rather than as affine functions of the numerical values of these quantities. This single change
puts our version of the problem beyond the scope of the solution techniques for the polyhedral model. We
will therefore need to investigate different techniques for counting the number of solutions to equations such
as equation (1).

1.3 Array layouts based on bit interleaving

In developing this model of alternative array layouts, we assume thatn = 2m, so that the bit representation
of an array index will havem bits, with the least significant bit (LSB) numbered0 and the most significant
bit (MSB) numberedm � 1. We identify the binary sequencesm�1 : : :s0 with the non-negative integer
s =

Pm�1
i=0 si2

i. We denote byBm the set of all binary sequences of lengthm, and extend the above
identification to identifyBm with interval[0; 2m � 1].

We will describe a family of nonlinear layout functions parameterized by a single parameter�, as fol-
lows. An (m;m)-interleaving, �, is a2m-bit binary sequence containingm 0s andm 1s. It describes the
order in which bits from the two array coordinates are interleaved to linearize the array in memory. Given
�, define itscharacteristic sequence �� to be the sequence with entriesfi andsi defined by replacing the
(i + 1)st 0 from the right in� by fi and the(i+ 1)st 1 from the right in� by si. (The lettersf ands are
chosen for mnemonic reasons: they are the initial letters of the words “first” and “second”.)

Example 2 Let m = 4 and let� = 10110010. Then�� = s3f3s2s1f2f1s0f0. Next, letm = 3 and let
� = 010011. In this case,�� = f2s2f1f0s1s0.

Given an(m;m)-interleaving�, define a map

� : Bm �Bm ! B2m
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in the following way. If a = am�1 : : :a1a0 2 Bm and b = bm�1 : : : b1b0 2 Bm, then�(a; b) is the
sequence obtained by replacing eachfi in �� by ai and eachsi in �� by bi. We extend this notation to
consider� as a map from[0; 2m� 1]� [0; 2m� 1]! [0; 22m� 1] by identifying non-negative integers and
their binary expansions. We call� themixing function indexed by�. Note that�(0; 0) = 0 for any�.

Example 3 Letm = 4 and let� = 01101001 so that�� = f3s3s2f2s1f1f0s0. Then

�(12; 5) = �(1100; 0101) = 10110001 = 128 + 32 + 16 + 1 = 177:

Next, let� = 10110010 so that�� = s3f3s2s1f2f1s0f0. In this case,

�(9; 6) = �(1001; 0110) = 01110001 = 64 + 32 + 16 + 1 = 113:

Many popular layout functions fall into this class. For example, row-major layout corresponds to the

signature� =

nz }| {
0 : : :0

nz }| {
1 : : :1; column-major layout corresponds to the signature� =

nz }| {
1 : : :1

nz }| {
0 : : :0; pure

Morton layout corresponds to the signature� =

2nz }| {
01 : : :01; a combination of Morton layout with2k � 2k

tiles arranged in row-major order corresponds to the signature� =

2(n�k)z }| {
01 : : :01

kz }| {
0 : : :0

kz }| {
1 : : :1; and so on.

We are now ready to discuss the matter of the layout functions of the three arrays in our matrix multi-
plication example. Given an arbitrary array element indexed(r; c), the quantity�(r; c) gives the position of
the element(r; c) relative to the starting position of the array in memory. We use the generic notation� to
denote this starting address. Specifically, we assume the following forms of layout functions forA, B, and
C:

LA(r; c) = �1 +�(r; c)

LB(r; c) = �2 +�(r; c)

LC(r; c) = �3 +�(r; c):

1.4 Goals and structure of the paper

Our overall goal, to be studied in a subsequent paper, is to find the layout functions of the form shown above
that minimize cache misses. In this paper, we create an analytic model of cache misses using layout functions
of this form, and we use this model to estimate the number of cache misses in the matrix multiplication
example. These results will form the basis for the analysis in future work.

The counting of cache misses for the matrix multiplicationexample is, in the end, a giant case analysis of
all possible patterns of interference among the various arrays. Fortunately, this analysis ultimately reduces
to solving two enumeration problems, which are then adapted and augmented in diverse ways, and finally
combined using inclusion-exclusion. We first discuss the two enumeration problems and their solutions in
an abstract setting in Section 2. We then adapt these algorithms to the cache model in Section 3 and to the
problem of counting cache misses in Section 4. We extend our analysis to set-associative caches in Section
5, and conclude in Section 6.

2 Two Enumeration Problems

In this section we study a pair of counting problems which together form the foundation for our enumeration
of cache misses. We will not attempt to determine closed-form expressions for these numbers—almost
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certainly the answers to these questions cannot be put in elegant closed forms. Instead, our goal will be to
describe efficient algorithms to determine the number of solutions.

We will let n = 2m andp = 2� be as in the last section. For any positive integerq we will let Bq

denote the number of binary sequencese = eq�1 : : :e1e0 of lengthq. When convenient, we will treate as a
non-negative integer in the range0 to 2q � 1 using the usual notion of binary representation.

2.1 Algorithm AB(d)

Given an(m;m)-interleaving�, an integerd with a�-bit binary expansion, and an initial carryk0 2 f0; 1g,
we want to determineAB(d), the number of triples(a; b; c) 2 B3

m such that

�(a; b) = �(b; c) + d+ k0 mod 2� (2)

under the condition that2m 6 �. A correct but inefficient algorithm would enumerate all possible triples
(a; b; c) and check satisfiability of equation (2) for each triple. Such an algorithm would have time complex-
ity of O(2m + �). The basic technique that we will use to derive an efficient algorithm of time complexity
O(max(m; �)) is to reason about individual bits of the terms on either side of the equation in terms of
whether theypropagate or generate carry bits. We will denote byk i the carry input at bit positioni (or,
equivalently, the carry output at positioni � 1). Note thatk0, the carry input at the least significant bit, is
supplied.

The first observation is that we can simplify the problem based on the values of bitsd��1 throughd2m.

Definition 2.1 (Consistency of d)
Let � be an(m;m)-interleaving and letd = d��1 : : :d0 2 B�. Let r = [u; : : :; v] be a subsequence of
P = [0; : : : ; � � 1]. We say thatd is �-consistent on r if dj = � for all j 2 r. We say thatd is inconsistent
onr if it is neither0-consistent not1-consistent onr.

Lemma 2.1 Equation (2) has no solutions if d is inconsistent on [2m; : : :; � � 1]. For � 2 f0; 1g, if d is
�-consistent on [2m; : : : ; �� 1], then equation (2) has solutions iff k 2m = k� = �.

Proof: By case analysis on bitsd��1 throughd2m. 2

This reduces the original problem to that of counting the number of solutions to a reduced systemE of
2m bit-equations, and separating the solutions ofE based on the value ofk2m that they produce. Letn� be
the number of solutions ofE that producek2m = �, for � 2 f0; 1g. Then we have the following expression
for AB(d):

AB(d) =

8<
:

n0; if d��1 = � � � = d2m = 0

n1; if d��1 = � � � = d2m = 1

0; otherwise.
(3)

We will now give an algorithm to determine the pair(n0; n1).
Let us label the2m components ofE with the numbers0 through2m� 1, with t being the label of the

equation corresponding to bit positiont. Bit equationt has one of two forms:

bi = ci + dt (4)

ai = bi + dt (5)

where0 6 i < m. For any fixedi, there is exactly one equation of form (4) and one equation of form (5)
(of course, with different values oft). Of these, call the equation with larger value oft themajor i-equation,
an the equation with smaller value oft theminor i-equation.
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The+ in the above equations is to be interpreted as binary addition, with hidden carry bits. To make this
explicit, we rewrite the component equations in a more elaborate form, using the operationsexclusive-or
(denoted�) andmajority (denotedMAJ). For equation (4) we get

bi = ci � dt � kt (6)

kt+1 = MAJ(ci; dt; kt) (7)

while for equation (5) we get

ai = bi � dt � kt (8)

kt+1 = MAJ(bi; dt; kt) (9)

Our interest is not so much in specific values of the bitsa i, bi, andci, but rather on the terminal carry
k2m that any particular assignment of bits produces. Asb is the only variable that occurs on both sides of
component equations, a particular choice ofb uniquely determines values ofa andc. We will therefore use
the bits ofb to collect solution triples that generate a common terminal carry. Looking at the behavior of
component equationt for a specific choice ofbi, we observe that it has three possiblemodes.

1. kt+1 = kt. We call this modePropagate, orP for short.

2. kt+1 = 0, independent ofkt. We call this mode0-Generate, orG0 for short.

3. kt+1 = 1, independent ofkt. We call this mode1-Generate, orG1 for short.

The following lemma relates these modes to the choice of valuebi.

Lemma 2.2 Equation (4) behaves in mode P if we set bi = dt and in mode Gdt if bi = �dt. Equation (5)
behaves in mode Gdt if we set bi = dt and in mode P if bi = �dt.

Proof: Simple case analysis based on possible values ofbi and ofkt. 2

The key idea in the algorithm is to capitalize on theG0 andG1 modes. Considerbm�1, the most
significant bit ofb. The major(m� 1)-equation occurs at position2m� 1, and the minor(m� 1)-equation
occus at some positions with s < 2m � 1. Depending on the form of equation2m � 1 and the value of
d2m�1, one of the two choices forbm�1 will lead to aG�-mode (with� 2 f0; 1g). This means that no matter
what values we assign to bitsbm�2 throughb0, they will all contribute ton�. We can therefore increment
n� by 2m�1. The other choice ofbm�1 will lead toP -mode for the major equation (and some mode for the
minor equation as determined by Lemma 2.2). In this case, we need to explore further the assignment of
values to lower-order bits ofb to separate those assignments that contribute ton0 from those that contribute
to n1. To do this, we will symbolicallyreduce the major and minor(m � 1)-equations to their modes for
this choice ofbm�1, and proceed to the equations involvingbm�2.

The reason behind the reduction of component equations to behavior modes becomes clear if we consider
the situation when we are considering how the assignment of values tob i, with 0 6 i < m � 1, affects the
countsn0 andn1. The fact that we are reasoning aboutbi means:

� that we have already considered the bitsbm�1 throughbi+1;

� that we have identified the unique assignment of values of these bits that leads toP -modes for the
major(m� 1)-equation through the major(i+ 1)-equation;

� that we have reduced all of these major and minor equations to their appropriate behavior modes for
these assignments of values to bitsbm�1 throughbi+1.

8



If component equationt is the majori-equation, then this means that component equationsm � 1 through
t + 1 have been reduced. (Some of the component equationst � 1 through0 may also have been reduced;
this does not concern us yet, because carries move from lower-order to higher-order bits.) In any case, one
of the two choices ofbi will lead to aG� mode for component equationt. However, we cannot at this
point simply incrementn� by 2i�1, since the generated carrykt+1 may be altered as it travels through the
reduced component equationst+ 1 throughm� 1. What we need to do is to determine the valuek2m = �

that emerges at the other end of this process, and incrementn� by 2i�1. The representation of component
equations as modes facilitates the determination ofk2m.

One final observation about the algebraic structure of modes allows us to calculate the terminal carry
k2m in a constant number of operations. It is easily seen that the mode setfP;G0; G1g is a monoid under
composition, withP as the identity element. Composition is defined by the following table.

P G0 G1

P P G0 G1

G0 G0 G0 G0

G1 G1 G1 G1

In trying to interpret this “composition table”, remember that carries move from right to left. Thus,G1P

means that an input carry first passes through aP -mode and then through aG1 mode. This is equivalent to
aG1 mode. Thus, instead of maintaining individual modes for reduced component equationsi+ 1 through
2m � 1 and laboriously propagatingkt+1 through them to obtaink2m, we can keep a compact description
of the combined effect of these modes and obtaink2m from kt+1 in a single step. Furthermore, we can
incrementally update this description as we move to lower-numbered component equations.

We are now ready to present the complete algorithm to determine(n0; n1).

1 n0  0
2 n1  0
3 mode P

4 i  m� 1

5 for t = 2m� 1 downto 0 do
6 if component equationt has been reduced to modeM then
7 mode COMPOSE(mode,M ) /* Use composition table */
8 else /* This is the majori-equation */
9 v  value ofbi that makes this equation behave in modeG�, from Lemma 2.2

10 �  APPLY(mode,�)
11 n�  n� + 2i

12 Locate the minori-equation and reduce it to the mode resulting from settingbi = �v

13 i  i� 1

14 endif
15 enddo
16 �  APPLY(mode,k0)
17 n�  n� + 1

Theorem 2.1 The above program correctly computes n0 and n1 and runs in O(m) steps.

Proof: Immediate from Lemmas 2.1 and 2.2. 2

Example 4 Let� = 001110, letd2m�1 � � �d0 = 011000 and letk0 = 1. In this case, the equations are:

E0 : a0 = b0 + 0

9



E1 : b0 = c0 + 0

E2 : b1 = c1 + 0

E3 : b2 = c2 + 1

E4 : a1 = b1 + 1

E5 : a2 = b2 + 0

The system of equations and(n0; n1) evolve in the following way as we go through the steps of the algo-
rithm:
t = 5: Now i = 2. Setv = 0 becauseb2 = 0 makesE5 behave in modeG0. Then� = 0 because mode= P

and� = 0 (i.e., a carry of 0 propagates through the reduced component equations). Updaten0 = 0 + 4. E3

is the minor 2-equation and gets reduced toP -mode. This leaves:

E0 : a0 = b0 + 0

E1 : b0 = c0 + 0

E2 : b1 = c1 + 0

E3 : b2 = c2 + 1 P -mode

E4 : a1 = b1 + 1

E5 : a2 = b2 + 0 P -mode

t = 4: Now i = 1. Setv = 1 and� = 1. Updaten1 = 0 + 2. E2 is the minor 1-equation and gets reduced
toP -mode. This leaves:

E0 : a0 = b0 + 0

E1 : b0 = c0 + 0

E2 : b1 = c1 + 0 P -mode

E3 : b2 = c2 + 1 P -mode

E4 : a1 = b1 + 1 P -mode

E5 : a2 = b2 + 0 P -mode

t = 3: mode= P because the previous value of mode,P , composed with the mode ofE3, P , isP .
t = 2: mode= P .
t = 1: Now i = 0. Setv = 1 and� = 0. Updaten0 = 4 + 1. E0 is the minor 0-equation and gets reduced
toG0-mode. This leaves:

E0 : a0 = b0 + 0 G0-mode

E1 : b0 = c0 + 0 P -mode

E2 : b1 = c1 + 0 P -mode

E3 : b2 = c2 + 1 P -mode

E4 : a1 = b1 + 1 P -mode

E5 : a2 = b2 + 0 P -mode

10



t = 0: mode= G0. Set� = 0 and updaten0 = 5 + 1.
The final values for(n0; n1) are(6; 2) which agrees with the answer obtained by explicit generation of

all solutions. So, ifd��1 = � � � = d2m = 0 thenAB(d) = 6, whereas ifd��1 = � � � = d2m = 1 thenAB(d)
= 2.

2.2 Algorithm AC(d)

We now investigate the following problem: Given an(m;m)-interleaving�, an integerd with a�-bit binary
expansion, determineAC(d), the number of triples(a; b; c) 2 B3

m such that

�(a; b) = �(a; c) + d mod 2� (10)

under the condition that2m 6 �. This problem is superficially similar to equation (2), with one small
but critical difference: the variable that occurs on both sides of equation (10) occurs in the0-positions of
� on both sides of the equation, whereas the variable that occurs on both sides of equation (2) occurs in
the0-position of� on one side of the equation and the1-position of� on the other side of the equation.
This difference makes the combinatorics of equation (10) radically different from the combinatorics of
equation (2), leading in the end to a conceptually simpler algorithm to computeAC(d).

If we write out equation (10) in terms of component bit-equations as we did for equation (2), we see that
component equationt (for 0 6 t < 2m) has one of two forms:ai = ai + dt if �t = 0, andbi = ci + dt
if �t = 1. The decoupling of the bits ofa from the bits ofb and c indicates that thea-component of
any solution of equation (10) can be chosen independent of theb- andc-components. The decoupling also
suggests that we need to look at the distribution of0s and1s in �. Based on these observations, we start
with a few definitions.

Definition 2.2 (Runs of �)
Let � be an(m;m)-interleaving, and letP be the sequence[0; : : : ; �� 1]. For � 2 f0; 1g, an�-run of � is
a maximal-length subsequence[u; : : : ; v] of P such that�u = � � � = �v = �, where�2m through���1 are

declared to be0. Order�-runs in increasing order ofu, and denote theith �-run of� byR(�)
i .

For technical reasons that will soon become evident, we will always want the “lowest” run to be a0-run.
This is a problem only when�0 = 1. In this case, we will create a special empty 0-runR

(0)
1 and label the

non-empty 0-runs fromR(0)
2 onwards. Thus,R(1)

i is sandwiched betweenR(0)

i andR(0)

i+1. Note also that the
0-runs constrain possible choices ofa, while the1-runs constrain possible choices ofb andc.

We obtain strong conditions on the (non-)existence of solutions of equation (10) by considering the
restrictions ofd to the0-runs of�. The intuition behind the following lemma and its proof are small
variations of Lemma 2.1.

Lemma 2.3 Equation (10) has no solutions if d is inconsistent on any 0-run of �. For � 2 f0; 1g, if d is

�-consistent on R(0)
i = [u; : : :; v], then equation (10) has solutions iff ku = kv+1 = �. If R(0)

1 is empty, then
every d is declared to be 0-consistent on it. 2

Lemma 2.3 has two important consequences. First, it provides an early termination test for the algorithm.
Second, ifd is indeed consistent on all0-runs of�, then it simplifies the counting of the number of choices
of a in the following way. Note that each of the component equations is of the forma i = ai + dt. Since the
same element ofa appears on both sides of the equation, there is in factno constraint ona! Thus, for every
possible choice ofb andc that we discover by examining the1-runs (which we will do shortly), any of the
2m choices ofa will work.
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ConsiderR(1)
i = [u; : : :; v], theith1-run of�. Recall that this run is sandwiched between runsR

(0)
i and

R
(0)

i+1. Letd bezu-consistent onR(0)
u . Let t = jR(1)

1 j+ � � �+ jR
(1)

i�1j. Then the component equations inR(1)

i

are as follows.

bt = ct � du � ku

ku+1 = MAJ(ct; du; ku)

bt+1 = ct+1 � du+1 � ku+1

ku+2 = MAJ(ct+1; du+1; ku+1)

� � �

bt+v�u = ct+v�u � dv � kv

kv+1 = MAJ(ct+v�u; dv; kv)

By Lemma 2.3, we know thatku = zi andkv+1 = zi+1. Thus we are constrained by being given the
values of both the initial and terminal carries of the1-run, and must determine how many choices of bit
values forb andc honor these constraints. It turns out that the easiest way to count the possibilities is to
reason about the bit patterns as non-negative integers. To this end, define� i = zu +

Pv
j=u dj2

j�u. That is,
�i is the integer corresponding to the bit patterndv � � �du, with the initial carry value absorbed into it. Also,
let�i = 2v�u+1 � �i. We then get the following result by case analysis on the value ofkv+1.

Theorem 2.2 Let � be an (m;m)-interleaving and let d 2 B� be consistent on all 0-runs of �. Then the
number of solutions to equation (10) is 2m �

Q`
i=1 Fi, where ` is the number of 1-runs of � and

Fi =

(
�i; if d is 0-consistent on R(0)

i+1

�i; if d is 1-consistent on R(0)

i+1.

Proof: By equating the coefficients of the distinct powers of2 on the two sides of (10) we arrive at a set of
restrictions on the sequencesa, b, c. Lemma 2.3 describes restrictions that result from equating coefficients
of powers2� where� is in a0-run of�. The elements ofa appear in these equations, with the same element
of a appearing on both sides. This gives no restrictions ona and so there are2m = n choices fora. This
accounts for the factor of2m that appears in the formula. The remaining factors will count the number of
choices we have forb andc.

Consider restrictions onb andc that result from equating coefficients of powers2� for � in a particular
1-runR(1)

i . Define�i andi by �i =
Pt+v�u

j=t bj2
j�t andi =

Pt+v�u
j=t cj2

j�t.

Case 1: Supposezi+1 = 0. Then the component equations onR(1)

i are equivalent to

�i � i = �i (11)

where we have equality of integers in equation (11). So, the number of choices we have forbj ; c` satisfying

the component equation onR(1)

i is equal to the number of integers�i, i with 0 � �i < 2v�u+1, 0 � i <

2v�u+1 that satisfy equation (11). For each�i with �i � �i < 2v�u+1 there is exactly one choice ofi
such that�i; i satisfy equation (11). For0 � �i < �i there are no choices ofi such that�i; i satisfy
equation (11). So the number of solutions to equation (11) is

2v�u+1 � �i = �i

which is theith factor in the product in the statement of the theorem.
Case 2: Supposezi+1 = 1. Then the component equations onR(1)

i are equivalent to:

�i + 2v�u+1 = �i + i
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which can be rewritten as:
i � �i = 2v�u+1 � �i: (12)

By the same reasoning as above, the number of solutions to equation (12) is�i, which is theith factor in the
product in the statement of the theorem. 2

Example 5 Letm = 5, � = 12, � = 1000110110 andd = 111101001111. We will useAlgorithm AC to
computeAC(d).

In Step 1 we compute the runs and the consistency valueszi:

R
(0)
1 = []; z1 = 0

R
(1)
1 = [0]

R
(0)
2 = [1; 2; 3]; z2 = 1

R
(1)
2 = [4; 5]

R
(0)
3 = [6]; z3 = 0

R
(1)
3 = [7; 8]

R
(0)
4 = [9; 10; 11]; z4 = 1

In Step 2 we compute the factorsFi and use them to determineAC(d):
i �i �i Fi
1 1 1 1
2 3 1 1
3 2 2 2

SoAC(d) = 32 � 1 � 1 � 2 = 64.

2.3 Counting joint solutions

The last problem we will consider in this section is to count those triplesa; b; c 2 Bm which satisfy the two
equations:

�(a; b) = �(b; c) + d (13)

and
�(a; b) = �(a; c) + e (14)

simultaneously. It is instructive to consider an example.

Example 6 Letm = 5, � = 11, � = 0110001011, d = 00010101111, ande = 00110001101. Recalling
thecharacteristic sequence notation from Section 1.3,�� = f4s4s3f3f2f1s2f0s1s0. Then the simultaneous
equations that must be satisfied are:

�(a; b) = �(b; c) + d �(a; b) = �(a; c) + e

b0 = c0 + 1 b0 = c0 + 1 s0

b1 = c1 + 1 + k0 b1 = c1 + 0 + `0 s1

a0 = b0 + 1 + k1 a0 = a0 + 1+ `1 f0
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b2 = c2 + 1 + k2 b2 = c2 + 1 + `2 s2

a1 = b1 + 0 + k3 a1 = a1 + 0+ `3 f1

a2 = b2 + 1 + k4 a2 = a2 + 0+ `4 f2

a3 = b3 + 0 + k5 a3 = a3 + 0+ `5 f3

b3 = c3 + 1 + k6 b3 = c3 + 1 + `6 s3

b4 = c4 + 0 + k7 b4 = c4 + 1 + `7 s4

a4 = b4 + 0 + k8 a4 = a4 + 0+ `8 f4

0 = 0 + k9 0 = 0 + `9

In the above set of equations,kt is the carry from thetth to (t + 1)st equation in�(a; b) = �(b; c) + d

whereas̀ t is the carry from thetth to the(t + 1)st equation in�(a; b) = �(a; c) + e. We will refer to
these two sets of equations as thed-system and thee-system. Also, we will let B denote the number of
fi-equations in the system above. Note thatB = m if 2m � �.

As we will see, it is seldom the case that there are any simultaneous solutions to equations (13) and (14).
The next result states that even if there are simultaneous solutions, there are not very many.

Theorem 2.3 The number of simultaneous solutions to equations (13) and (14) is less than or equal to 2 �B

times the number of solutions to equation (14).

Proof: Suppose there is a simultaneoussolution to equations (13) and (14). Then thes i-equations determine
the values ofb0; b1; : : : ; bB�1. To this simultaneous solution of equations (13) and (14) we can correspond
2B solutions to equation (14) which have the samebi andci but where the choices ofa0; a1; : : : ; aB�1 range
over all possibilities. 2

One might ask whether there are instances in which the number of simultaneous solutions to equations
(13) and (14) is exactly2�B times the number of solutions to equation (14). The next result tells us that this
the case whend = e.

Definition 2.3
LetS denote the set of solutions to equation (14). We say two solutions(a (1); b(1); c(1)) and(a(2); b(2); c(2)) 2
S areequivalent if b(1) = b(2) andc(1) = c(2).

It is straightforward to see that every equivalence class has sizen and that equivalence classes are
indexed by pairsb; c 2 Bm.

Theorem 2.4 If d = e, then there is exactly one solution to equation (13) in every equivalence class of
solutions to equation (14).

Proof: Consider the equivalence class indexed by the pairb; c. It is clear that there is at most one solution
(a; b; c) to equation (13) in that equivalence class becauseai is determined by equationfi. It remains to
show that there is at least one solution.

Consider the process of solving for theai and the carrieskt in equations of type (13) starting withb; c
which gives (along with anya) a solution to equation (14). The thing we need to check is that the carriesk t
we get in the equations of type (13) are identical to the carries`t we get in equations of type (14). We see
this by induction ont.

Assume thatkt�1 = `t�1. There are two cases to consider. First assume equationt is labelledsi
so that in system (13) thetth equation isbi = ci + dt + kt�1 and in system (14) thetth equation is
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bi = ci + dt + `t�1. In this situation it is clear thatkt will be equal to`t. Next, assume that equationt is
labelledfi. In this case thetth equation in system (13) isai = bi + dt + kt�1 whereas thetth equation in
system (14) isai = ai + dt + `t�1. By Lemma 2.3 we havèt = `t�1 = dt. By our induction hypothesis,
kt�1 = `t�1 = dt. Becausekt�1 = dt we havekt = dt sokt = `t which completes the induction step and
finishes the proof. 2

Corollary 2.5 Let notation be as in Theorem 2.3. Then:

1. The number of triples (a; b; c) which are simultaneous solutions to �(a; b) = �(b; c) + d and
�(a; b) = �(a; c) + d is

Q
Fi.

2. The number of simultaneous solutions can be computed in O(�) steps.

The above results show that there are not very many simultaneous solutions of equations (13) and (14).
The next results indicate that in most instances there are no simultaneous solutions.

Suppose there exist simultaneous solutions to equations (13) and (14). From our previous analysis, we
know a number of things.

a) e must be consistent on0-runs of�.

b) In equation (14) the carry into any0-run and carry out of that0-run must both match the value ofe on
that run.

As a first test to whether there exist simultaneous solutions to equations (13) and (14), conditionsa) andb)
can be checked inO(�) steps. We are now going to focus on1-runs.

Suppose that equationsu; u+ 1; : : : ; u+ j � 1 constitute a1-run and that these equations are labeled
si; si+1; : : : ; si+j�1. Let�; ; �; " be the numbers with binary expansions given below:

� = bibi+1 � � �bi+j�1

 = cici+1 � � �ci+j�1

� = dudu+1 � � �du+j�1

" = eueu+1 � � �eu+j�1 .

By comparing equationssi; : : : ; si+j�1 in equations (13) and (14) we see that:

� =  + � + ku�1 =  + "+ `u�1: (15)

Also `u�1 is specified to be the consistent value ofe on preceding0-run and must be chosen so that
+"+`u�1 is less than2j iff the value one on the subsequent0-run is0. From equation (15), the following
result follows immediately.

Theorem 2.6 Let � and " be the numbers whose binary expansions are given by the binary digits of d and
e on a 1-run of � as above. If there are simultaneous solutions to equations (13) and (14) then � and " must
differ by no more than 1.

More precisely, we must have one of the following four cases:

1. � = "+ `u�1.

Note: In this case we also must haveku�1 = 0.
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2. � = "+ `u�1 � 1.

Note: In this case we also must haveku�1 = 1.

3. � = 0; " = 2j � 1; `u�1 = 1.

Note: In this case, we also must have thatku�1 = 0 and thate is consistently1 on the next0-run.

4. � = 2j � 1; " = `u�1 = 0.

Note: In this case, we also must have thatku�1 = 1 and thate is consistently0 on the next0-run.

Theorem 2.6 gives anotherO(�) test which can determine that there are no simultaneous solutions to equa-
tions (13) and (14). Note that if we assumed ande are chosen randomly, then Theorem 2.6 together with
conditiona) show that the probability that there exist simultaneous solutions to equations (13) and (14) is
no more than2�(B+U�R), whereB is the number offi-equations,U is the number ofsi-equations andR
is the number of runs of�. Note thatB + U = minf2m; �g. Alternatively, if we have some freedom to
choosed; e and�, then the conditions given ina) and Theorem 2.6 can be used to insure that there are no
simultaneous solutions to equations (13) and (14). We will return to this important point in our later paper
on minimizing the number of cache misses.

It seems unlikely to us that there exists an algorithm which is polynomial inm or linear in� which
determines the exact number of simultaneous solutions to equations (13) and (14). Just to conclude, we
examine the case given in Example 6 just to point out some of the complexities of this problem.

Turning to the set of equations given in Example 6, we first examine whether the conditions set out ina)
andb) hold. It can be seen thate is consistent on0-runs with value1 on f0, value0 on f1; f2; f3 and value
1 onf4. Conditionb) thus implies that̀ 1 = `2 = 1; `3 = `4 = `5 = `6 = 0 and`8 = `9 = 0.

To now consider the constraints given by Theorem 2.6, we must look at 1-runs. For the 1-runs0; s1, we
have� = " = 3 and`�1 = 0. So we are in Case 1. This implies thatk�1 = 0 and that̀ 1 = 1. This gives
a constraint on = c0c1 i.e.,  + " � 4. This constraint on, which comes from consideration of thee
equations, which implies thatk1 = 1.

Moving now to the 1-runs2, we have that� = 1; " = 0 andl2 = 1. So we are again in Case 1 which
implies thatk2 = 0. But now we have an inconsistency: it is impossible to havek1 = 1 andk2 = 0. So
there are no simultaneous solutions to equations (13) and (14) in the case given in Example 6.

This particular example gives a flavor for the complex interplay that can take place between the con-
straints imposed by thed equations and those imposed by thee equations. At this time, we do not know a
fast algorithm to determine the number of simultaneous solutions exactly.

3 Incorporating Cache Block Size

In the last section, we devised fast algorithms to compute the number of solutions to systems of equations
of the form

�(a; b) = �(b; c) + d mod 2�

and
�(a; b) = �(a; c) + d mod 2�:

In practice, we will need to extend these algorithms to enumerate solutions to a slightly different pair of
equations. Usually2� memory locations fit into a cache block, represented by the denominator in the
following equations.
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Thus, the equation has to be takenmod2���. In practice,� often equals2 or 4. We show the case
� = 2 to provide the case distinction in full detail; the extension for� 2 N+

0 is straightforward, but requires
consideration of more cases for� > 2.

b
�(a; b) + �

4
c = b

�(b; c) + �

4
c mod 2��2 (16)

and

b
�(a; b) + �

4
c = b

�(a; c) + �

4
c mod 2��2 (17)

where�; � 2 B�.
In this section we sketch methods, based on the ideas and algorithms developed in Section 2, to compute

the number of solutions to equations (16) and (17). We will take the two equations in turn, starting with
equation (17) because much of what we find there can later be reused for the treatment of equation (16).

3.1 Computing the number of solutions to equation (17)

To begin we will write out the digits in the binary expansions of�(a; b) + � and�(a; c) + �. Equating
these expressions gives a system of equationsE = E0; E1; : : : ; E��1 where equation (17) imposes the
requirement that equationsE2; E3; : : :E��1 must be satisfied mod 2. In order to satisfy equation (17),E0

orE1 need not hold mod 2. ConsiderE0 andE1. They look like one of the following:

a0 + �0 = a0 + �0

a1 + �1 + k0 = a1 + �1 + `0 (18)

or
a0 + �0 = a0 + �0

b0 + �1 + k0 = c0 + �1 + `0 (19)

or
b0 + �0 = c0 + �0

a0 + �1 + k0 = a0 + �1 + `0 (20)

or
b0 + �0 = c0 + �0

b1 + �1 + k0 = c1 + �1 + `0 (21)

wherek0 is the carry from the left side ofE0, andl0 is the carry from the right side ofE0. Case (18) occurs
when�1�0 = 00, (19) when�1�0 = 10, (20) when�1�0 = 01, and (21) when�1�0 = 11. The key
observation is that the variables which appear in these equations do not appear in any of the later equations
E2; E3; : : : ; E��1, because onlyai can occur more than once for eachi and both instances ofai are in
equationEi.

Our algorithm for enumerating the solutions to equation (17) begins with a loop over all possible choices
of values for the variables that occur inE0 andE1. So, this outer loop runs through4; 8; 8, or16 possibilities
depending on whether we are in case (18), (19), (20), or (21) respectively.

Once values for these variables have been chosen, we compute the carriesk1 and`1 that are added to
the left and right sides ofE2. Let

�0 = k1 +

��1X
i=2

�i2
i�2
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and

�0 = `1 +

��1X
i=2

�i2
i�2:

Then the number of solutions to equation (17) with the chosen values for the variables inE 0 andE1 is equal
to the number of solutions to

�0(a0; b0) + �0 = �0(a0; c0) + �0 mod 2��2 (22)

wherea0; b0; c0 each come fromBm�2, Bm�1 orBm depending on whether�1�0 = 00; 10; 01 or 11. Here
�0 is the mixing function based on the interleaving� 0 obtained from� by deleting�0 and�1. Let

d =

�
�0 � �0 if �0 � �0

2��2 + �0 � �0 if �0 < �0

Then the number of solutions to equation (22) is equal to the number of solutions to

�0(a0; b0) = �0(a0; c0) + d

which can be computed using the AC algorithm inO(m+ �) steps.

With this generalization we call the algorithm theextended AC Algorithm.

3.2 Computing the number of solutions to equation (16)

As in Section 3.1 we will begin by writing out expressions for the digits in the binary expansions of
�(a; b) + � and�(b; c) + �. This gives a system of equationsE0; E1; : : : ; E��1 where the requirement of
equation (16) is thatE2; : : : ; E��1 must be satisfied mod 2 (E0 andE1 need not hold mod 2).

Again, we will look atE0, E1 and find that they have one of four possible forms:

a0 + �0 = b0 + �0

a1 + �1 + k0 = b1 + �1 + `0 (23)

or
a0 + �0 = b0 + �0

b0 + �1 + k0 = c0 + �1 + `0 (24)

or
b0 + �0 = c0 + �0

a0 + �1 + k0 = b0 + �1 + `0 (25)

or
b0 + �0 = c0 + �0

b1 + �1 + k0 = c1 + �1 + `0 (26)

wherek0 is the carry from the left side ofE0, andl0 is the carry from the right side ofE0. Case (23) occurs
when�1�0 = 00, (24) when�1�0 = 10, (25) when�1�0 = 01, and (26) when�1�0 = 11. Note that in (24)
and (25) the variables which occur in equationsE0 andE1 do not occur inE2; E3; : : : ; E��1, because only
bi can occur more than once for eachi and both instances ofb0 occur inE0 andE1. Therefore, we can use
the same method we used in Section 3.1 to devise fast algorithms to compute the number of solutions.
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Cases (23) and (26) are slightly different becauseb0 andb1 may occur later inE2; E3; : : : ; E��1. In
case (23), our algorithm has an outside loop over the four possible choices of values fora0 anda1. For each
choice of these values, we compute the carryk1 which is added to the left-hand side ofE2. We let

�0 = 4k1 +

��1X
i=2

�i2
i

and we apply theAB Algorithm to count the number of solutions to

�(a; b) = �(b; c) + d

where

d =

�
� � �0 if � � �0

2� + � � �0 if � < �0:

This number is equal to the number of solutions to equation (16) in whicha 0 anda1 have the specified
values.

We handle case (26) in a way quite similar to (23). We loop over the four possible choices of values for
c0 andc1. For each of these values, we compute the carryl1 which is added to the right-hand side ofE2 and
let

�0 = 4l1 +

��1X
i=2

�i2
i

and we apply theAB Algorithm to count the number of solutions to

�(a; b) = �(b; c) + d

where

d =

�
�0 � � if �0 � �

2� + �0 � � if �0 < �:

This number is equal to the number of solutions to equation (16) in whichc 0 andc1 have the specified
values.

With this generalization we call the algorithm theextended AB Algorithm.

4 Calculating the Number of Cache Misses

In this section we return to the problem of counting cache misses. Recall that we are analyzing the data
layout function defined in terms of anm;m interleaving� = �2m�1 : : : �1�0 by

Ai;k maps to�1 + �(i; k)

Bk;j maps to�2 +�(k; j)

Ci;j maps to�3 +�(i; j).

and that we use the following suggestive notation:

A miss is the number of cache misses when accessing an element of A,

A-B miss is the number of cache misses which occur when an element of A is accessed which was in cache
but was removed because an element of B took its place,
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A-BC miss is the number of cache misses which occur when an element of A is accessed which was
previously in cache and such that both an element of B and an element of C have taken its place in cache
since it was most recently there, and so on.

Considering the inclusion-exclusion property of set intersections, the task is to enumerate the following
types of misses:

A miss = A-A miss + A-B miss + A-C miss� A-AB miss� A-BC miss� A-AC miss + A-ABC miss

B miss = B-A miss + B-B miss + B-C miss� B-AB miss� B-BC miss� B-AC miss + B-ABC miss

C miss = C-A miss + C-B miss + C-C miss� C-AB miss� C-BC miss� C-AC miss + C-ABC miss

Figure 1 shows this forA miss.
However in the special case of matrix multiplication, some misses need not be considered; in particular

there are noA-A, A-AB, A-AC, or A-ABC misses because unique elementsAi;k are accessed in the two
outermost loops only. A method to derive the types of misses that arerequired in the more general case of
programs other than matrix multiplication is subject of future work. We have also proven in Section 2 that
the number of simultaneous solutions is very small.

A-ABC

A-A
A-AC

A-BC

A-C

A-B

A-AB

Figure 1:A miss: inclusion-exclusion property

Please note that we are not including every type of miss in our analysis, but are including a case that
represents each of the key ideas involved in counting the number of cache misses.

Throughout this section, we will continue to assume that2m � � to simplify the exposition. In the case
that2m > �, the following changes must be made to the analysis in this section. Each time an iteration
point (i; k; j) is counted as a miss, then only initial segments of the binary expansions ofi, k and j are
determined.

There are no constraints on how these initial segments are extended to give complete binary expansions
of i, k and j. So each miss enumerated in this section must be multiplied by2D whereD is the total
number of undetermined binary digits ini, k andj (the numberD depends on which kind of miss is being
enumerated and so must be determined on a case by case basis).

4.1 Computing A miss

In this subsection we show how to efficiently computeA miss. An array elementAi;k will be accessed at the
n iteration points(i; k; w), where0 � w � n�1. Suppose that we have a cache miss whenAi;k is accessed
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at the iteration point(i; k; j). As the same element ofA is accessed throughout the innermost loop, there
are noA-A misses. Since we are using the lexicographic orderingi � k � j, the iteration point(i; k; j) is
immediately preceded by the iteration point(i; k; j � 1) at which the array elementAi;k is accessed. Thus
at the iteration point(i; k; j � 1) there must be a memory access of an element ofB orC which occupies
the same cache set asAi;k.

Although possibly negligible, there could also be a small number of contributions toA miss along the
boundary of the innermost loop. The array elementAi;k�1 is accessed during the(i; k� 1; n� 1) iteration
step and the array elementAi;k is accessed during the following iteration step,(i; k; 0). SupposeA i;k�1

andAi;k occupy the same cache word, then a cache miss occurs if there is a memory access of an element
of B or C that maps to the same cache set asAi;k�1 at (i; k � 1; n � 1). It will be the case that the array
elementAi;k existed in the cache, but was removed by an access toBk�1;n�1 or Ci;n�1 at iteration step
(i; k� 1; n� 1).

We can now examineA-B miss andA-C miss separately.

4.1.1 Computing A-B miss

During the(i; k; j) iteration step we form the productAi;k � Bk;j and add it toCi;j . When we do so, we
access these three pieces of information in the orderAi;k followed byBk;j followed byCi;j . So, in order
for this cache miss to contribute toA-B miss, it must be the case that the array elementAi;k was removed
from cache at the previous iteration step when the array elementBk;j�1 was accessed, i.e.,Ai;k andBk;j�1

occupy the same word in cache. This is equivalent to:

b
�1 +�(i; k)

4
c = b

�2 +�(k; j � 1)

4
c mod 2��2 (27)

where this equation is takenmod
p
4
= 2��2. So A-B miss is equal to the number of solutions(i; k; j) to

equation (27) with0 � i � n � 1, 0 � k � n � 1 and1 � j � n � 1. The number of solutions to
equation (27) is computed by theExtended AB Algorithm.

To countA-B misses along the boundary of the innermost loop, we determine ifAi;k�1 andAi;k occupy
the same cache word

b
�1 + �(i; k� 1)

4
c = b

�1 +�(i; k)

4
c (28)

and if so, we check if an access to the array elementBk�1;n�1 causes a cache miss

b
�1 + �(i; k� 1)

4
c = b

�2 +�(k � 1; n� 1)

4
c mod 2��2

incrementing theA-B miss count if both equations are satisfied.

4.1.2 Computing A-C miss

By the same reasoning as above, the number of cache misses that contribute toA-C miss is the number of
solutions to

b
�1 + �(i; k)

4
c = b

�3 +�(i; j � 1)

4
c mod 2��2 (29)

where this equation is taken modulop
4
= 2��2 andi; j; k are constrained to lie in the intervals0 � i �

n � 1; 0 � k � n � 1 and1 � j � n � 1. The number of solutions to equation (29) is computed by the
Extended AC Algorithm.

21



To count the contributions toA-C miss along the boundary of the innermost loop, we check ifA i;k�1

andAi;k occupy the same cache word exactly as in equation (28), and if so we determine if an access to the
array elementCi;n�1 causes a cache miss

b
�1 + �(i; k� 1)

4
c = b

�3 +�(i; n� 1)

4
c mod 2��2

incrementing theA-C miss count if both equations are satisfied.

4.1.3 Computing A-BC miss

We will count zeroA-BC misses. The conditions in Section 2.3 can be checked inO(�) steps to determine
whether this count is accurate. As proved in Section 2.3, even if there are instances of such misses, their
number is small – less than2�T of the total number of misses, whereT is the number of ones in the set
f�2; �3; : : : ; ���1g. In fact, on the basis of this result, we are setting all terms requiring the simultaneous
solving of equations (e.g.,B-AB miss, B-BC miss, B-AC miss, B-ABC miss, C-AB miss, C-BC miss,
C-AC miss, C-ABC miss) to zero.

4.2 Computing C miss

The quantityC miss counts the number of iteration points(i; k; j)with k > 0 such that the matrix element
C[i; k; j] is not in cache thereby causing a miss. As a first step, we will determineL[i; k; j] which denotes
the most recent iteration step, prior to(i; k; j)at whichC[i; k; j]was in cache. Note thatL[i; k; j] is the most
recent iteration step when an element ofC was accessed that occupies the same cache word asC[i; k; j]. If
we writeL[i; k; j] = (i0; k0; j0) this is equivalent to:

b
�3 +�(i; j)

4
c = b

�3 + �(i0; j0)

4
c (30)

4.2.1 Computing C-A miss

The solution to equation (30) depends on the form of� and so at this point the analysis must break into
cases. There are four cases to consider depending on whether�1�0 = 00; 01; 10 or 11. We will write out
details in two of the cases which represent the technical problems that come up in the other two cases. The
details of the remaining two cases are left to the reader.

Case 1: �1�0 = 00.

In this case, the four elements ofC which occupy the same cache word asC[i; k; j] = Ci;j areusually
Ci;j�u; Ci;j�u+1; Ci;j�u+2; Ci;j�u+3 where�3 + �(i; j) � u mod 4. The modifier0usually0 refers to the
observation that not all of these elements ofC might exist in the extreme cases wherej < u or j�u+3 � n.
But as long asu > 0 andj > 0, Ci;j�1 is in the same cache word asCi;j . In this case,C[i; k; j] is brought
into cache at the preceding iteration step(i; k; j� 1) and soL(i; k; j) = (i; k; j� 1).

If j = 0 or u = 0 thenL(i; k; j) = (i; k� 1; j � u+ 3) unlessj � u+ 3 � n. In that case (u = 0 and
j � u+ 3 � n), L(i; k; j) = (i; k� 1; n� 1). To summarize: ifu � �3 + �(i; j) mod 4, then

L(i; k; j) =

8<
:
(i; k; j� 1) if j > 0 andu > 0

(i; k� 1; j � u+ 3) if j = 0 or fu = 0 andj � u+ 3 < ng

(i; k� 1; n� 1) if u = 0 andj � u+ 3 � n:

Now C-A miss is the number of pairs of iteration points(i; k; j); (x; z; y) such that

L(i; k; j)< (x; z; y)� (i; k; j) (31)
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and

b
�1 + �(x; z)

4
c = b

�3 +�(i; j)

4
c mod 2��2 (32)

To clarify the connection betweenC-A miss, equation (31), and equation (32) note that equation (32) states
thatA[x; z; y] andC[i; k; j] occupy the same cache word and equation (31) states that iteration step(x; z; y)

occurs sometime between the iteration step(i; k; j) and the previous iteration step whenC[i; k; j] was
brought into cache.

We now break our analysis into two cases depending on the exact form ofL[i; k; j]. If L[i; k; j] =
(i; k; j � 1) then we must have(x; z; y) = (i; k; j). Also, if u = 0 andj + 3 � n so thatL[i; k; j] =
(i; k�1; n�1) then equation (31) becomes(i; k�1; n�1) < (x; z; y)� (i; k; j). This cannot be satisfied
with z = k� 1 because we would then needn� 1 < y. So we must havez = k andy = j. This is a second
instance in which(x; z; y) must be equal to(i; k; j). In this case, equation (32) states:

b
�1 + �(i; k)

4
c = b

�3 +�(i; j)

4
c mod 2��2

Solutions to this equation are enumerated by theExtended AC Algorithm.
If j = 0 or u = 0 andj�u+3 � n� 1 then equation (31) states that(i; k� 1; j�u+3) < (x; z; y) �

(i; k; j). We deduce thatx = i and thatz is equal to eitherk � 1 or k. Also, in this case we cannot satisfy
the inequalityj � u + 3 < y � j so we must havez = k � 1. Thus the contribution toC-A miss made in
this case is number of solutions to equation (32) which is:

b
�1 + �(i; k� 1)

4
c = b

�3 +�(i; j)

4
c mod 2��2

This is equivalent to enumerating solutions to

b
�1 +�(i; k0)

4
c = b

�3 +�(i; j)

4
c mod 2��2

where0 � i � n � 1; 0 � k0 � n � 2; 0 � j � n � 1. Solutions to this equation are enumerated by the
Extended AC algorithm.

This completes Case 1 in our analysis ofC-A miss.

Case 2: �1�0 = 10.

The fundamental difference between the analysis in this case and the analysis in Case 1 is the relationship
between cache words and the arraysA;B; C. In particular, the elements ofC that occupy the same cache
word asCi;j are

Ci�v;j�u ; Ci�v+1;j�u ; Ci�v;j�u+1; Ci�v+1;j�u+1 (33)

where
�3 + �(i; j)� v mod 2

and
�3 + �(i; j)� v

2
� u mod 2

The analysis now parallels the analysis in Case 1 but with changes in some details to reflect the cache word
structure given in equation (33).

If j > 0 andu > 0 theL[i; k; j] = (i; k; j � 1) and we proceed as in Case 1. Ifu = 0 andj = n � 1

thenL[i; k; j] = (i; k� 1; n� 1) = (i; k� 1; j). In both these cases, if a cache miss is caused by the access
of Ax;z removingCi;j at iteration step(x; z; y), whereL[i; k; j] < (x; z; y) � (i; k; j), then we must have
(x; z; y) = (i; k; j). These instances are enumerated as in Case 1 by theExtended AC algorithm.
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If j = 0 or if u = 0 andj < n � 1 thenL(i; k; j) = (i; k� 1; j � u + 1). In this case,(x; z; y) must
equal(i; k� 1; j � u+ 1) and we enumerate these instances as in Case 1. This completes the computation
of C-A miss in Case 2.

The computation ofC-A miss in the remaining two cases is similar.
Note thatC-C miss can be handled in a manner similar toC-A miss. There is the same consideration of

the most recent iteration step at which an element ofC was addessed that occupies the same cache word as
C[i; k; j], and the analysis breaks into the same four cases depending on�1�0. The key difference is that in
this case, an access toCx;y interferes with an access toCi;j , wherex; y are as in equation (31).

4.2.2 Computing C-B miss

To computeC-B miss, we need to compute the number of pairs of triples(i; k; j), (x; z; y) which satisfy
equation (31) such thatC[i; k; j] = Ci;j andB[x; z; y] = Bz;y occupy the same cache block. This latter
condition is equivalent to:

b
�3 + �(i; j)

4
c = b

�2 +�(z; y)

4
c mod 2��2 (34)

As in the previous subsection, ifb �3+�(i;j�1)4 c = b
�3+�(i;j)

4 c, then equation (31) implies that(x; z; y) =
(i; k; j). In that case, equation (34) is equivalent to:

b
�3 +�(i; j)

4
c = b

�2 + �(k; j)

4
c mod 2��2 (35)

Let �̂ be the interleaving obtained from� by interchanging0’s and1’s and let�̂ denote the mixing function
determined bŷ�. Note that for any pair of non-negative integersv; w:

�(v; w) = �̂(w; v):

Thus, we can re-write equation (35) by

b
�3 + �̂(j; i)

4
c = b

�2 + �̂(j; k)

4
c mod 2��2 (36)

The Extended AC Algorithm counts solutions to equation (36) which gives us a fast algorithm to count
contributions toC-B miss that arise in the instances where(x; z; y) = (i; k; j).

The remaining contributions toC-B miss come from solutions to equation (34) in the cases where either
j = 0 or

b
�3 +�(i; j � 1)

4
c 6= b

�3 +�(i; j)

4
c

The analyses of these two cases are somewhat different and so we do them separately.
Consider the case where

b
�3 +�(i; j � 1)

4
c 6= b

�3 +�(i; j)

4
c

This can occur in one of three different ways. If�0 = 1 then this condition is equivalent to�3 +�(i; j) �

0 mod 4. If �1�0 = 10 then this condition is equivalent to�3 + �(i; j) � 0; 1 mod 4. Lastly, if
�1�0 = 00 then this condition always holds.

In this case, we haveL(i; k; j) = (i; k� 1; j + 1) and so equation (31) becomes

(i; k� 1; j + 1) < (x; z; y)� (i; k; j):
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At first glance, the enumeration of solutions to equation (34) appears to be problematic. Although we can
deduce thatz is eitherk � 1 or k, we have very little control onj. So equation (34) contains four variables
that are essentially independent. After some simplification of the problem, we will see that this is in fact an
advantage and makes the enumeration of solutions particularly easy.

To count solutions to equation (34) we first loop over all possible values for the first two digits in the
binary expansions of�(i; j) and�(z; y). This will involve specifying the first two digits ofi, or the first
digit of i and the first digit ofj, or the first two digits ofj depending on the values of� 1�0. Let i0; j0 be
the remaining, unspecified digits ofi andj. Definez0 andy0 similarly. Also, define�0 to be the mixing
function associated with� 0 = : : : �3�2.

Having specified the first two digits of�(i; j) and�(z; y) we next perform the following steps:

1) Check whetherb�3+�(i;j�1)
4

c = b
�3+�(i;j)

4
c. If so, go to the next step in the loop (hereloop refers to the

outermost loop whose steps are indexed by the choices for possible first two digits of�(i; j) and�(z; y)).
Otherwise, continue to step 2).

2) Let�03 beb�3
4
c+ �1 where�1 is the binary carry from the first to the second binary digits in�3+�(i; j).

3) Let�02 beb�2
4
c+ �1 where�1 is the binary carry from the first to the second binary digits in�2+�(z; y).

The number of solutions to equation (34), given the specified digits in�(i; j) and�(z; y) is equal to the
number of solutions to

�03 + �0(i0; j0) = �02 +�0(z0; y0) mod 2��2 (37)

Defined by:

d =

�
�03 � �02 if �03 � �02
p
4 + �03 � �02 if �03 < �02

Then the number of solutions to equation (37) is equal to the number of solutions to equation (38):

d+ �0(i0; j0) = �0(z0; y0) mod 2��2 (38)

Enumerating solutions to equation (38) is straightforward. Letd 0 consist of the first2m� 2 binary digits of
d. First, examine the remaining binary digits,d` for 2m � 2 � ` � � � 3. Unless these remaining binary
digits are identical, there are no solutions to equation (38). If they are identical and equal to�, then the
number of solutions to equation (38) is equal to the number of solutions to:

d0 +�0(i0; j0) = �0(z0; y0) mod 22m�2 (39)

for which the terminal carry on the left hand side of equation (39) is�. The key observation is that the
number of solutions to equation (39) is equal to the number of pairs(i 0; j0) which result in terminal carry�
– once such a pair has been specified there is a unique choice ofz0; y0 which satisy equation (39).

In our design of theAC Algorithm (Section 2), we exactly determined the number of pairsi0; j 0 which
give terminal carry� on the left-hand side of equation (39). This number is:�

22m�2
� d0 if � = 0

d0 if � = 1:

This finishes our enumeration of solutions to equation (34) in the case thatb
�3+�(i;j�1)

4
c 6= b

�3+�(i;j)

4
c. To

evaluate the complexity of this enumeration algorithm: there is an outer loop through the sixteen possible
choices for the first two binary digits of�(i; j) and�(z; y). Within that loop, we need to determined and
check whether the binary digits ofd are consistent between2m� 2 and� � 3. That takesO(�) operations.
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Then we need to computed0 which can be done inO(m) operations. Thus the total complexity in this case
isO(�).

To complete the calculation ofC-B miss we need to consider the case wherej = 0. By the same series
of reductions we used in the previous case, this reduces to enumerating solutions to

d0 +�0(i0; 0) = �0(z0; y0) mod 22m�2 (40)

As before, equation (40) has no solutions unless the binary digitsd `; ` = � � 3; : : : ; 2m� 1; 2m� 2 are
identical. If they are identical, let� 2 f0; 1g represent their common value. In that case, the number of
solutions to equation (40) is equal to the number ofi 0 for whichd0 +�0(i0; 0) has terminal carry�.

To efficiently compute this number, first scan the left hand sides of the equations in equation (40) from
bottom to top. Consider those left hand sides which have the formd 0` + 0 + k`�1 (where0 comes from the
j0 = 0 component in�0(i0; 0), i.e.,�`+2 = 1). If d0` = 1 then erase that equation as you know that whatever
carry comes in, the same carry will go out. Ifd0` = 0 then stop your scan. You know thatk` will have to
be0. So we can start constructing solutions from the next equation on without regard to any earlier binary
digits of i0. To this end, let� be the number ofi0a which occur in equation in equation (40) that comes before
your stopping point. Letd 00 be the digits ofd0 that remain on the left hand side of equation (40) above the
`th digit (we use the wordremain because we have erased some equations at earlier steps in the scan). Let
i00 be the corresponding digits ofi0 and let� be the number of digits ofd00. Then the number of solutions to
equation (40) is2� times the number ofi00 such that�

d00 + i00 < 2� if � = 0

d00 + i00 � 2� if � = 1

This number is computed as before which completes thej = 0 case and therefore completes our computation
of C-B miss.

Note that the algorithm described here to handle the casej = 0 has complexityO(�). Also note that for
each choice of initial two digits in�(i; j), the solutions to equation (34) wherej = 0 are either contained
in, or else disjoint from, the solutions whereb �3+�(i;j�1)

4
c 6= b

�3+�(i;j)

4
c. It is trivial to determine whether

there is inclusion by examination of the initial two digits chosen which takes care of any overcounting that
results from iteration steps(i; k; j) that are enumerated in both of these cases.

4.3 Computing B miss

In this subsection we finish the analysis of misses by computingB miss. The quantityB miss counts the
number of interation points(i; k; j) at which the matrix elementBk;j is not in cache, having been there
previously.

If Bk;j is in the same cache block asBk;j�1, (Note: This case will arise if�0 = 1 and�2 + �(k; j) 6�

1; 2; 3 mod 4 or if �1�0 = 10 and�2 + �(k; j) � 2; 3 mod 4.) any collisions that forcedBk;j out of
cache must have occured at iteration step(i; k; j� 1) if the collision occurs with an element ofC or at step
(i; k; j) if the collision occurs with an element ofA. Using arguments that are similar to those in previous
cases, we see that these instances are enumerated by theExtended AB Algorithm and theExtended AC
Algorithm. So we only need to examine the cases whereBk;j andBk;j�1 occupy different cache words.
This analysis depends on the form of� and so we need to consider different cases.

4.3.1 Computing B-A miss

We want to add one toB-A miss if there is an iteration step(x; z; y)with

(i; k� 1; j + 1) < (x; z; y)� (i; k; j)
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for which the matrix entryAx;z occupies the same cache word asBk;j . Note thatx = i and thatz = k � 1

or z = k. We are free to choosey as long as we choosey > j + 1 whenz = k andy � j whenz = k.
Case 1: Bk;j is in the same cache word asBk�1;j but not in the same cache word asBk;j�1. (Note: This case
will arise if �1�0 = 10 and�2+�(k; j) � 1 mod 4 or if �1�0 � 00 and�2+�(k; j) � 1; 2; 3 mod 4).

In this case,Bk;j is brought into cache at iteration step(i; k; j � 1). The enumeration of misses in this
case is similar to previous cases.

Enumerating(i; k; j)which satisfy these conditions is equivalent to counting(i; k; j)which are solutions
to:

b
�2 +�(k; j)

4
c = b

�1 +�(i; k)

4
c mod 2��2 (41)

(we can then choose anyy � j) OR which are solutions to:

b
�2 +�(k; j)

4
c = b

�1 + �(i; k� 1)

4
c mod 2��2 (42)

with j < n � 1 (we can then choose anyy > j + 1). In doing so, we must be careful to count those
(i; k; j)which satisfy both sets of equations only once. Fortunately, because we are in Case 2, we know that
b
�2+�(k;j)

4
c = b

�2+�(k�1;j)
4

c. So we can replace equation (42) with an identical equation which hask � 1

in place ofk on the left hand side. When this is done, equation (42) is identical to equation (41) with the
variablek0 = k � 1 in place ofk. So, to count(i; k; j)which are solutions to at least one of equation (41)
or equation (42), we can just count solutions to equation (41). The number of solutions to equation (41) can
be computed as in previous cases.

Case 2: Bk;j is in a different cache block from bothBk�1;j andBk;j�1. (Note: This arises exactly when
�2 + �(k; j) � 0 mod 4).

In this case, the most recent previous access ofBk;j was at iteration step

(i� 1; k + 3; j) if �1�0 = 00

(i� 1; k + 1; j + 1) if �1�0 = 01 or 10

(i� 1; k; j + 3) if �1�0 = 11.

We will consider just one of these possibilities – the others are handled in similar ways. Assume that
�1�0 = 10.

The iteration step(i; k; j) contributes toB-A miss if there is an iteration step(x; z; y)with

(i� 1; k+ 1; j + 1) < (x; z; y)� (i; k; j)

satisfying

b
�3 + �(k; j)

4
c = b

�1 + �(x; z)

4
c mod 2��2

This is similar to the exceptional case forC-B miss where�3 + �(i; j) � 0 mod 4. We enumerate
solutions in a similar way.

Note thatB-B miss andB-C miss are computed in ways quite similar toB-A miss, dividing the analysis
in the same Case 1 and Case 2. ForB-B miss, we are counting triples(i; k; j) such that the array element
Bk;j was in cache but was removed because array elementBz;y took its place in cache. ForB-C miss, we
are counting triples(i; k; j) such thatBk;j was displaced from cache byCx;y .

This completes the enumeration of cache misses.
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5 A -way Associative Cache

In this section, we indicate the changes needed to generalize our enumeration of cache misses from direct
mapped cache to the case of anA -way associative cache (Figure 2). In this case, memory locationM is
mapped to the cache set� = bM

4
c mod pA , wherepA =

p
A

is the number of cache sets.� containsA
cache blocks (each consisting of four memory locations, as explained in Section 3) that are filled according
to either the first-in, first-out (FIFO) protocol, the least recently used (LRU) protocol or random fill [6]. LRU
gives the best performance but is usually the most difficult to describe. We will show the analysis given the
LRU protocol.

A
4

4
(a) (b) (c)

1

Figure 2: (a) cache word (b) cache block, size 4 (c) cache set,A =3

Assuming the LRU protocol, a cache block is evicted on a cache miss when its last access lies furthest
back in time. I.e., in our framework, we must enumerate instances where a matrix elementX is accessed
and brought into the cache set�, and where at leastA times, since the previous access ofX , different matrix
elements are accessed that are not in cache and which are mapped to the same cache set�. We will use
the termcollisions for such instances and call these instancescollisions with X . For more specificity, we
will characterize collisions according to what kinds of array elements are involved. So, we will talk about
C-A collisions meaning instances when an array element fromA is brought into the same cache set as an
element ofC between consecutive accesses of that element ofC. The relationship between collisions and
cache misses is straightforward - when we access a matrix elementX , we will have a cache miss if there
have been greater thanA collisions withX since the previous access. Thus, misses constitute a subset of
collisions.

In the following, we will show the analysis forC collisions. According to our strategy, we will enu-
merate iteration steps(i; k; j) according to the number of collisions of typeC-A, C-B, C-C, C-AB, C-AC,
C-BC, andC-ABC that have occurred between the access ofCi;j at iterations step(i; k � 1; j + �) and
(i; k; j).

The considerations that go into enumeration of collisions will be very similar the considerations that
went into the enumeration of cache misses in the direct mapped case, but the general enumeration framework
will be somewhat more challenging. Instead of dividing the analysis according to which matrix is being
accessed, we will divide the analysis according to the number of iteration steps since the most recent access
of the matrix element under consideration.

Consider the situation where we access a matrix elementX at iteration step(i; k; j). At this point, we
will not yet specify which of the arraysA;B orC thatX comes from.

Case 6:1: The matrix elementX was last accessed at iteration step(i; k; j � 1).

In this case, the access ofX at iteration step(i; k; j) can only cause a cache miss forL = 1; 2. This case
can be handled using arguments from the previous section. Note that this case includes allA misses and a
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subset of theC misses.

Case 6:2: The most recent access ofX (prior to iteration step(i; k; j)) was at iteration step(i; k� 1; j+ �)

for some� .

At this point, it is necessary to consider which of the arraysX comes from.

Consider the problem of determining whether there is a cache miss with anA -way associative cache
whenCi;j is accessed at iteration step(i; k; j). For the next few paragraphs, it is important to keep in mind
that i; k; j are fixed. We are going to try to find conditions oni; k; j under which there will be at leastA
collisions withCi;j between iteration steps(i; k� 1; j + �) and(i; k; j).

For C-A collisions, let� be the number of distinctAx;z which occupy the same cache set asCi;j and
which are accessed between steps(i; k�1; j+�) and(i; k; j). By that latter condition, we must havex = i

andz 2 fk � 1; kg. So,� = 0; 1; 2 depending on whether neither, one of, or both ofu = k � 1 andu = k

give solutions to:

b
�3 +�(i; j)

4
c = b

�1 + �(i; u)

4
c mod 2� (43)

For C-B collisions, let � be the number of distinctBz;y which occupy the same cache set asCi;j and
which are accessed between steps(i; k�1; j+�) and(i; k; j). By that latter condition, we must havex = i

andz 2 fk � 1; kg. To occupy the same cache set asCi;j we must have

b
�3 + �(i; j)

4
c = b

�2 +�(z; y)

4
c mod 2� (44)

Finally for C-C collisions, let be the number of distinctCx;y which occupy the same cache set asCi;j

and which are accessed between steps(i; k � 1; j + �) and(i; k; j). By the latter condition, we must have
x = i. To occupy the same cache set asCi;j we must have

b
�3 +�(i; j)

4
c = b

�3 + �(x; y)

4
c mod 2� (45)

Sincex = i, equation (44) is equivalent to

b
�3 +�(i; j)

4
c = b

�3 + �(i; y)

4
c mod 2� (46)

Before diving into details, it is worth discussing the broad outlines of the enumeration method that we
follow. Our immediate goal is to enumerateC misses with an A -way associative cache. More precisely,
we want to count iteration steps(i; k; j) where the most recent prior access ofCi;j was at iteration step
(i; k � 1; j + �) and where there have been at leastA distinct matrix elementsX inserted into the same
cache set asCi;j between iteration steps(i; k� 1; j + �) and(i; k; j).

The solutions to equation (43) characterize thoseX = Ai;u which collide withCi;j , the solutions to
equation (44) characterize thoseBz;y which collide withCi;j and the solutions to equation (46) characterize
thoseCi;y which collide withCi;j , all collisions occuring between iteration steps(i; k�1; j+�)and(i; k; j).

For any fixed(i; k; j) there can be at most twoC-A collisions because solutions to equation (43) deter-
mine(i; k; j). The collisions will occur whenAi;u is inserted into the same cache set asCi;j . Sinceu must
be eitherk or k � 1, there can be at most two such collisions. There are two collisions if(i; k � 1; j) and
(i; k; j) are simultaneously solutions to equation (43) and so we will have to enumerate such instances.

The treatment ofC-B collisions is more complicated. The number of collisions for a fixed(i; k; j) is the
number of solutions to equation (44) withz = k andy � j plus the number of solutions to equation (44)
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with z = (k � 1) andy > j. If 2m � � thenz andy are completely determined by equation (44) and
so the total number ofC-B collisions for a fixed(i; k; j) will be at most two. However, if2m > � then
you must consider the number of ways you can extendmod 2� solutionsi; j; z; y of equation (44). You
have unrestricted choice of extensions fori; z thus creating22�E0 distinct choices fori; k. For each choice
of extension ofj you must count to extensions ofy so thaty � j if z = k or y > j if z = (k � 1).
The number of such extensions ofy will dictate the number ofC-B collisions for this particular(i; k; j). A
crucial consideration is whether(i; k; j) and(i; k � 1; j) are simultaneously solutions to equation (44). If
so, any extension ofy will create aC-B collision without any consideration of howy compares toj. So, we
will need an algorithm to determine the number of iteration steps(i; k; j) for which there are simultaneous
solutions to equation (44) withz = k andz = k � 1.

Considerations of extensions also come into play when countingC-C misses. In this case,k is arbitrary
so whatever enumeration of collisions we do for a fixedi; j will hold for all iteration steps of the form
(i; k; j). Again, equation (46) determinesy (in terms ofi; j) mod2�. We can then extendi; j; y without
restriction in digits� to 2m � 1. Different extensions ofi; j give different iteration steps(i; k; j) (again,k
is free to take on any value). However, different extensions ofy give multipleC-C collisions at the iteration
step(i; k; j).

This gives a framework for the enumeration. The method will utilize the technology we’ve already
developed, with a couple of simple extensions, to enumerate solutions to equation (43), equation (44), and
equation (46). If2m � � then this analysis follows closely the analysis of cache misses in the direct mapped
case done in Section 4.

So we will focus on the case where2m > � where there are considerations not previously encountered.
In this case, we must consider extensions of solutions to binary digits� and beyond. These extensions
sometimes expand the number of iteration points(i; k; j) and sometimes expand the number of collisions
per iteration point.

When this analysis is complete, we will have countedC-A, C-B andC-C collisions separately. We must
then indicate how to count iteration points where there are simultaneousC-A, C-B andC-C collisions. We
begin with two technical lemmas that will be key to our analysis.

Lemma 5.1 There is an algorithm, ALGORITHM D1, that counts the number of triples (i; z; j) such that

b
�3 +�(i; j)

4
c = b

�1 + �(i; z)

4
c = b

�1 +�(i; z + 1)

4
c mod 2� (47)

Moreover, this algorithm has the same complexity as the AC ALGORITHM.

The algorithm proceeds loops over possible first two digits of�(i; j) and�(i; z). For each such choice, the
algorithm computes if there is a contribution to the total count and proceeds to the next step in the loop. The
complete proof is shown in Appendix A.1.

There is a second situation, similar in nature, in which we will need to count instances where two
solutions differ by just one in one of the variables.

Lemma 5.2 There is an algorithm, ALGORITHM D2, which counts the number of triples (i; k; j) 2 B 3
m

such that there are simultaneous solutions v; x 2 Bm to:

b
�3 + �(i; j)

4
c = b

�2 +�(k; v)

4
c = b

�2 + �(k � 1; x)

4
c (48)
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In addition, this algorithm will determine the number of solutions to equation (48) which satisfy v � j < x.
The complexity of this algorithm is O(�).

The complete proof is somewhat lengthy. It can be found in Appendix A.2.

We are now ready to enumerate cache misses with anA -way associative cache using the strategy outlined
above. We introduce two more pieces of notation to ease discussion. First, letE0 andE1 be the number of
�i with i � � which are equal to0 and1 respectively. LetE = E0 + E1. Note thatE = maxf2m� �; 0g.
Second, when referring to a variable that occurs in one of the equationsequation (43)� equation (46) we
will use r to denote the digits in the variabler that occur in the equation taken mod2 � and(p; q; r)2� to
denote that all variables in the tuple should be taken mod2�, i.e. triple(p; q; r)2� containsp; q andr. Note
thatr = r if E = 0. Let us first enumerateC-A collisions.

5.1 Enumeration of C-A collisions

Step 1: Using the methods from Sections 2–4, determine NS, the number of triples(i; j; u)2� which satisfy
equation (43). Using ALGORITHM D1 from Lemma 5.1, determine ND, the number of triples(i; j; u)2�

such that(i; j; u)2� and(i; j; u� 1)2� simultaneously satisfy equation (43).

Step 2: There are(NS � ND) � 2E0+2E1 iteration steps(i; k; j) at which there has been a singleC-A
collision since the previous access ofCi;j . There areND � 2E0+2E1 iteration points(i; k; j) at which there
have been twoC-A collisions since the previous access ofCi;j .

5.2 Enumeration of C-B collisions

This is the far more interesting case because elements of both B and C (C[i; j] andB[k; j]) are less “well
behaved” than thoseA[i; k] of array A. Thus, subsequently we show the approach in full length.

Step 1: Using the methods from Sections 2–4, determine NS, the number of triplesT = (i; j; z)2� having
the property that there is ay such that(i; j; z; y)2� satisfies equation (44). To each such tripleT we attach
a multiplicity m[T ], this being the number ofy. Equation equation (44) almost completely determiney

however this multiplicity may arise if there is more than one choice of initial digits fory which give the same
carry in�2 +�(z; y) from digits0; 1 to digit2. Using ALGORITHM D2 from Lemma 5.2, determine ND,
the number of triples(i; j; k)2� such that there are simultaneous solutions(i; j; k; u)2� and(i; j; k� 1; x)2�

to equation (44). Also, using ALGORITHM D2, determine ND1, the number of triples(i; j; k)2� such that
there are simultaneous solutions(i; j; k; u)2� and(i; j; k� 1; x)2� to equation (44) withx � j < u. Again,
we will attach a multiplicity to each of these solutions.

Step 2: The next step differs significantly depending on whetherE > 0 orE = 0, i.e whether2m 6 �

or 2m > �. We divide into those two cases, of which the latter is the more interesting.

Case 1: E = 0

In this case, our enumeration is straightforward. There areND1 iteration points(i; k; j) in which there are
two collisions of the forms1 = (i; k; j; u) and2 = (i; k � 1; j; x). Each of1 and2 must be counted
according to its multiplicity. There areNS�2�ND1 iteration points where there has been a unique collision
(which must be counted with multiplicity).

Case 2: E > 0:

In this case, the enumeration is more challenging. Consider a solutionT = (i; z; j)2� counted in the number
NS. It is enumerated because there exists ay such that(i; j; z; y)2� is a solution to equation (44). Let
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T2� = (i; z � 1; j)2�. Assume first thatT2� is not also a solution to equation (44). Let(i; k; j) be any triple
of numbers that extendT . Any extension ofy will count a collision that occurs whenB k;j is accessed at
iteration step(i; k; y) so long asy � j. Let�(j) = b j

2�c and let�(y) = b y2� c. If �(y) < �(j), theny < j.
If �(y) > �(j) theny > j. If �(y) = �(j), theny � j iff y � j. So,�(j) is an estimate for the number of
collisions that is correct to within one.

On the other hand, the extension ofy is arbitrary. So, for every solutionT = (i; z; j)2� to equation (44)
counted by NS which is not counted by ND, and for every choice of� 2 f0; 1; : : : ; 2E1 � 1g there are22�E0

iteration steps(i; k; j) for which the number ofC-B collisions is � times the multiplicity of the triples, and
this estimate is correct to within the multiplicity.

Assume now thatT2� is also a solution to equation (44). Such pairs(T; T2�) are enumerated by AL-
GORITHM D2: their contribution to the analysis above must be subtracted out as a first step. In this case,
every one of the2(2E0+E1) extensions(i; k; j)of T = (i; z; j)2� is an iteration step at which there have been
m[T ] � 2E1 collisions between the access ofCi;j at iteration step(i; k� 1; j + �) and current access.

The reasoning is as follows. Let(i; z; j; u)2� and (i; z � 1; j; x)2� be the simultaneous solutions to
equation (48). There are2(2E0+E1) extensions of(i; z; j)2� to a triple(i; k; j). Let � 2 BE1

. If � � �(j)

then we assign� to be an extension ofu to au � j so that there is a collision whenB k;u is accessed at
iteration step(i; k; u). If � > �(j) then we assign� to be an extension ofsx to anx > j so that there is a
collision whenBk�1;x is accessed at iteration step(i; k� 1; x).

5.3 Enumeration of C-C collisions

LetNS be the number of solutions to equation (46) which we can compute using the methods in Sections 2-
4. For every choice of solution(i; j; y)2� to equation (46) there are2E0+E1 ways to extendi; j to i; j 2 Bm.
For each such pair of extensions there are2m ways to choose ak to complete the determination of the
iteration step(i; k; j). Then every one of the2E1 possible extensions ofy to y 2 Bm indexes a collision
betweenCi;y andCi;j that occurs between the access ofCi;j at iteration step(i; k� 1; j+ �) and the access
at iteration step(i; k; j). If y < j then the collision occurs at the iteration step(i; k; y), whereas ify > j

then the collision occurs at iteration step(i; k� 1; y). There is one exception to this analysis. Clearlyy = j

is a solution to equation (46) if and only if the choice of initial digits fory andj are identical. So, it is
straightforward to computeR, the number of solutions to equation (46) in whichy = j. The significance
of theseR solutions,is that ify = j, theny = j is a possible extension ofy in which case, the collision we
count above is not genuine.

To summarize, there areNS � 2E0+E1+m iteration points where there have beenC-C collisions. Of
these, inR � 2E0+E1+m cases there have been2E1 � 1 collisions and in(NS � R) � 2E0+E1+m there have
been2E1 collisions.

The following chart summarizes the analysis ofC-A, C-B, andC-C collisions above.

Type # of iteration pts # of Collisions
C � A NSequation (43) � 2

E0+2�E1 1 or 2
C � B1 (NSequation (44) � 2 �NSequation (48)) � 2

2�E0 � (#� < 2E�1) � z = k

2E1 � � z = k � 1

C � B2 NSequation (48) � 2
2�E0+E1 2E1

C � C NS � 2E0+E1+m 2E1 or (2E1 � 1)
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It remains to enumerate iteration points that fall into more than one of those categories. To understand
the need for this, assume for example that2E1 < A < 22�E1. Then no iteration point would exhibit more
thanA collisions of a single typeC-A, C-B or C-C. However, if there exists and iteration point that is
simultaneously of typeC-B2 andC-C, then there would be at least22�E1 > A collisions between the access
of Ci;j at (i; k� 1; j + �) and the access at(i; k; j). So there would be aC miss at (i; k; j)with anA -way
associative cache.

The way we proceed is largely similar to what we have already shown in Section 4 for the direct
mapped case. The lengthy analysis shown in Appendix A.3 yields a method to enumerate iteration points
by number ofC collisions. Using this method, we can determine�(C; t), the number of iteration points
(i; k; j) for which there have been exactlyt collisions withCi;j between the prior access ofCi;j and the
access at(i; k; j). Assuming anA -way associative cache with a LRU protocol the number ofC misses isP

t�A
�(C; t).

At this point we have indicated how to enumerateA misses andC misses in the case of anA -way
associative cache. It remains to enumerateB misses. Since the technical difficulties we encounter, as well
as the ideas we use to overcome these difficulties, are similar to those seen in the enumeration ofC misses
we leave details to the reader.

The extension to first in first out (FIFO) replacement is straightforward. Here, the requirement that the
accessed matrix elements aredifferent is dropped in the definition of a collision.

6 Conclusions

This paper introduced a class of array layouts,interleavings, and efficient algorithms to exactly assess
the number of cache misses caused by such layouts when used in the context of matrix multiplication.
The layouts are described by bit-level address manipulations, and cache misses are counted by reasoning
about the solutions to simple bit-level equations. Most importantly, we achieve a reduction in complexity
from O(2m + �) to O(max(m; �)) with respect to the naive algorithm by exploiting properties of carry
propagation. Although there are various subcases in the analysis of cache misses, each case can be ultimately
reduced to one of two combinatorial enumeration problems.

A particular strength of our techniques is that it explicitly handles cross interference between arrays,
which is generally considered to be difficult to handle. Also, our model allows an elegant extension to a
set-associative cache with LRU replacement strategy.

Our current work has several limitations. First, we have thus far provided an analysis only of matrix
multiplication, and for2m � 2m matrices at that. It seems likely that the ideas can be generalized to handle
other computations, but this remains to be demonstrated. Second, a number of special cases arise in dealing
with the least significant bits of� that are truncated when converting a memory address to a block address.
Our restriction to a cache block size of four elements required us to handle only two bits of�, but the
problem could be more acute for larger block sizes (e.g., in analyzing TLB behavior). Finally, our use of
inclusion-exclusion poses the imminent danger of combinatorical explosion when the interaction of many
arrays has to be calculated. However, as mentioned in Section 2.3, this case can be adequately approximated
as many of these intersections are empty or sparse.

Our immediate future work will tackle the optimization problem of determining layout functions that
minimize the number of cache misses for matrix multiplication. There are also related problems—such as
counting compulsory misses, differentiating capacity and compulsory misses, and identifyingcache contents
at the end of executing a loop nest—for which efficient algorithms remain to be found.
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A Proofs and Details for Section 5

A.1 Proof of Lemma 5.1

Proof: First, the algorithm will loop over the possible first two digits of�(i; j). As before in Section 3, we
will let �03 + �0(i0; j 0) denote the part of�3 + �(i; j) in digits2 to (� � 1) where the carry from digits0; 1
are incorporated into�03.

Similarly, loop over the possible first two digits of�(i; z) (some of which might have already been fixed
becausei is common to�(i; j) and�(i; z). When�(i; z+ 1) is computed from�(i; z) there will be some
carry � 2 B2 from the part ofz + 1 that occurs in the first two digits of�(i; z + 1) to the part ofz + 1

that occurs in the digits2 � (� � 1) of �(i; z + 1). Note that� is determined by the first two digits of
�(i; z) that we are looping over. Lastly, let1 and2 be the carry from digit one to digit two in�1+�(i; z)

and�1 + �(i; z + 1) respectively. We use the prime notation from Section 4 to denote digits2 � (� � 1).
Combining all this we have

�03 +�0(i0; j 0) = �01 +�0(i0; z0) + 1 = �01 +�0(i0; z0 + �) + 2 (49)

The equalities in the equation above are modulo2��2 but still it is clear that the only possible ways in which
they can be realized are if

1) 1 = 2 = � = 0

or

2) 1 = � = 1; 2 = 0 and�2 = 1.

So the algorithm proceeds in the following way. It loops over possible first two digits of�(i; j) and
�(i; z). For each such choice, the algorithm computes1; 2 and�. If neither1) or 2) above is satisfied,
then there is no contribution to the total count and the algorithm proceeds to the next step in the loop. If
either1) and2) above is satisfied, then the algorithm computes the number of solutions to the equation:

�03 +�0(i0; j0) = �01 +�0(i0; z0) (50)

using the AC ALGORITHM and adds that number to the total.

A.2 Proof of Lemma 5.2

Proof: We will need some terminology and notation to explain this algorithm. Let I be the number of0’s in
the setf�0; �1g. Theinitial digits of eitherk or k � 1 will refer to the firstI , i.e., those that appear in the
first two digits of�(k; v) and�(k � 1; x). Let � be the minimal index greater than 1 with�� = 0. So we
have�2 = �3 = � � � = ���1 = 1.

The first step in this algorithm is to loop over choices for the initial digits ofk � 1 (which will also
determine the initial digits ofk. Let � � 2I be the carry when1 is added to the initial digits ofk � 1. Note
that� is carried to the� th binary digit when�(k; v) is computed from�(k � 1; v).

The next step is to loop over possible carries�0, �1 and�2 from the zero and first binary digits to the
second binary digit in�3+�(i; j),�2+�(k; v) and�2+�(k�1; x) respectively. We compute the number
N0N1N2 whereN0 is the number of choices for the zero and first binary digits of�3 + �(i; j) which will
result in a carry of�0, whereN1 is the number of choices of initial digits ofv andx respectively which will
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result in carries of�1 and�2 respectively (given the choices we’ve already made for initial digits ink � 1

andk).
With this notation and the prime notation we can express equations equation (48) as:

�03 +�0(i0; j0) + �0 = �02 +�0(k0; v0) + �1 = �02 + �0((k� 1)0; x0) + �2: (51)

So,
�0((k� 1)0; v0) + �1 + � � 2��2 = �0((k � 1)0; x0) + �2: (52)

Rewriting equation (52) we obtain,

(�1 � �2) + � � 2��2 = �0((k� 1)0; x0)� �0((k� 1)0; v0): (53)

Let v̂ andx̂ denotev0 andx0 taken mod2��2. We note that the right-hand side of equation (53) is equal to

x̂� v̂ + GLOB

whereGLOB is a multiple of2��1. Since the left-hand side of equation (53) is strictly less than2��1, we
deduce thatGLOB = 0 and so

�1 � �2 + � � 2��2 = x̂� v̂: (54)

Case 1: � = 0.

In this case, equation (54) becomes
�1 + v̂ = �2 + x̂: (55)

Also, �1+ v̂ = �2+ x̂ is completely determined by the equality equation (51). So there is exactly one choice
of v̂ andx̂ in this case for everyi; j. So in this case there areminf2��2; 22m�2g choices fori; j. For each
such choice there is exactly one choice ofk. For this triple(i; k; j) there areN0 � N1 �N2 choices ofBw;z

that collide withCi;j between its access at iteration steps(i; k� 1; j + �) and(i; k; j).
It remains to determine the number of these collisions satisfyingv � j < x. The reader will note that

�1 + v0 = �2 + x0

so there are no suchj unless�1 = 1; �2 = 0 and in this case anyj with v � j < x must satisfy

v0 = j 0 < x0 = v0 + 1: (56)

The first thing to check is whether the choices of initial digits forj; x; v would mean thatj 0; x0; v0 which
satisfy equation (56) would givej; x; v with v � j < x. If not, then there are no suchj. If so, we enumerate
j0; x0; v0 by enumerating solutions to:

�03 +�0(i0; j0) = �02 +�0(k0; j 0)

using the methods developed in Section 2.

Case 2: � = 1.

In this case equation (54) is equivalent to:

v̂ + �1 = x̂+ �2 + 2� : (57)

Recalling that̂v; x̂ 2 B� , we see that equation (57) can have a solution only ifx̂ = 0; �2 = 0; �1 = 1 and
v̂ = 2��1. In order for these choices ofx̂; v̂; �1 and�2 to satisfy equation (51) we must have that�0

3+j
0+�0
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agrees with�02 in digits0� (� � 3). This implies that digits0� (�� 3) in j 0 are determined by�3; �0 and
�2. So there areminf2��� ; 22m��g choices for suchi; j. Each determines a uniquek andN0 � N1 � N2

pairsw; z such thatBw;z collides withCi;j between the access ofCi;j at iteration steps(i; k� 1; j+ �) and
(i; k; j).

Lastly, we need to determine the number of these solutions which satisfyv � j < x. However, in this
case,v > x and so there are no suchj.

This completes the proof of Lemma 5.2 and the construction of ALGORITHM D2.

A.3 Enumeration of iteration points that exhibit simultaneous collisions

We show the case of the enumeration of iteration points that exhibit simultaneous C-A and C-B collisions
and thus seek to enumerate iteration points(i; k; j) such that there have been bothC-A andC-B collisions
between(i; k � 1; j + �) and(i; k; j). We begin by enumeration simultaneous solutions to equation (43)
and equation (44) but with the added factor that eitheru = z, u+1 = z or u = z +1. We split our analysis
into those three cases.

We will consider only the case whereu = z here - the other cases can be handled via similar methods.
In the caseu = z, a simultaneous solution to equation (43) and equation (44) must satisfy:

b
�3 +�(i; j)2�

4
c = b

�1 + �(i; z)2�

4
c = b

�2 + �(z; y)2�

4
c (58)

We enumerate solutions to equation (58) by first counting solutionsj; z to the left-most equality using the
AB-Algorithm, but keeping the choice ofi open for the moment. For each such solutionj; z, there is one
and only one choice ofi andy that satisfies the second equality.

If E = 0, theni; j; z andy are determined at this point. Also,k is determined, ask = z if y � j and
k = z + 1 if y > j. For this iteration point(i; k; j), the number of collisions will be2; 3 or 4. The normal
case will be2 but3 or 4 may result if there are twoC-A collisions or twoC-B collisions (or both). We will
discuss these cases below.

If E > 0 then we must extendi; j; z andy to get i; j; z andy. The consideration on extensions is
identical to those above. In particular,k will be eitherz or z + 1 depending on how the extension ofy
compares to the extension onj. In cases wherez andz + 1 are not both solutions to equation (44) then the
number of collisions will be1 + �(j) or 2 + �(j) for k = z depending on whether there are multipleC-A
collisions (which is disussed below). The number of collisions will be1 + 2E1 � �(j) or 2 + 2E1 � �(j)

for k = z + 1 depending on whether there are multipleC-A collisions. However, ifz andz + 1 are both
solutions to equation (44) then the number of collisions will be either1 + 2E1 or 2 + 2E1 depending on
whether there are multipleC-A collisions.

So we will need to enumerate simultaneous solutions to equation (47) and equation (44), equation (43)
and equation (48), equation (47) and equation (48). These enumeration problems can be solved using the
tools we have already developed and applied to counting solutions to equation (43) and equation (44). So,
we will omit many of the details in our account of how to proceed.

To enumerate simultaneous solutions to equation (47) and equation (44), we begin by counting solutions
to

b
�3 + �(i; j)2�

4
c = b

�1 + �(i; z)2�

4
c = b

�1 +�(i; z + 12�)

4
c = b

�2 +�(z; y)2�

4
c (59)

To count solutions to this equation, use Lemma 5.1 to enumerate solutionsj; z to the first two equalitites
leavingi undecided. Withj; z fixed there are unique choices fori andy which satisfy the third equality.
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Each choice ofj; z; i, andy which satisfy equation (59) must now be extended. First, note that there are
2E0+2�E1 ways to extend each solutionj; z; i. Observe that the extension ofz must bek � 1 because of the
form of equations equation (59). For each such extension, there are2 + Y collisions of typesC � A and
C � B at iteration point(i; k; j) whereY is the number of extensions ofy. Sincez = k � 1, theY is the
number of extensions ofy is 2E1 � �(j) where�(j) is the extension ofj.

As noted in the previous paragraph, the form of equations equation (59) imply thatz = k � 1. So we
must also solve a second set of equations which differ from equation (59) only in that the lastz is replaced
by z + 1. The enumeration of solutions to this set of equations follows the lines above with the only major
difference being that there are�(j) extensions possible fory. This impacts the number of collisions that
have occurred at iteration step(i; k; j).

To enumerate simultaneous solutions to equation (43) and equation (48), we must count solutions to the
system of equations

b
�3 + �(i; j)2�

4
c = b

�1 + �(i; z)2�

4
c = b

�1 + �(z; y)2�

4
c = b

�2 +�(z + 1; x)2�

4
c (60)

To enumeration of solutions to equation (60), we use the AB Algorithm to count solutions to the second
equality. The reasoning that went into the proof of Lemma 5.2 give (in each of two cases), the relationship
betweeny andx. The one complication that arises is in the case (from Lemma 5.2) where� = 1. In this
case, the first� digits of y0 are determined and so the first� digits ofz 0 will also be determined. This gives
a partial determination ofz which must be factored into the AB Algorithm as was done in Section 3.

Each solution of equation (60) must be extended. The number of extensions is straightforward to count
in this case, since there are2E1 extensions of the pairy; x.

To complete this analysis, we must enumerate simultaneous solutions to equation (47) and equation (48).
We begin by enumerating solutions to

b
�3 +�(i; j)2�

4
c = b

�1 + �(i; z)2�

4
c = b

�1 + �(i; z + 1)2�

4
c (61)

= b
�1 +�(z; y)2�

4
c = b

�2 + �(z + 1; x)2�

4
c:

To characterize solutions to equation (61), begin with the first two equalities. Following the reasoning in the
proof of Lemma 5.1, we can eliminate some choices for initial digits ofj; z; i; x, andy. For those that are
not eliminated, solutions of equation (61) are equivalent to solutions of equation (60) and so we can use the
methods developed above to enumerate those solutions. As in other cases, once solutions to equation (61)
are enumerated, they must be extended to give simultaneous solutions to equation (47) and equation (48).
These extensions will then give the number of iteration points. At each there will be2 + 2E1 collisions
between the access ofCi;j at that iteration step and the most recent previous access.

This completes the enumeration of iteration steps where there have been both andC-A andC-B colli-
sions. The next step is to enumerate iteration points where there have been bothC-A andC-C collisions,
iteration points where there have been bothC-B andC-C collisions, and iteration points where there have
been all three ofC-A, C-B andC-C collisions. To shorten this exposition, we will only indicate where the
modifications of the previous analyses come in.

To enumerate cases where there have been bothC-A andC-C collisions is straightforward. Enumerate
solutionsj; u of to equation (43) including the number for which bothj; u andj; u� 1 are solutions. For
each of these, there is at most oney such thatj; y satisfy equation (46). There will exist any unless the
carries from the initial two digits of the two sides of equation (46) are different. In this case you may have to
eliminate one possible solutions to equation (43). This determination can be made by anO(�) examination
of �1 and�3. Oncej; u andy have been determined, we can choosei arbitrarily and we can arbitrarily
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extendj; u andy to j; u andy. Different extensions ofi; j andu lead to different iteration points. However,
for fixed i; j andu, different extensions ofy correspond to multiple collisions.

To enumerate cases where there have been bothC-B andC-C collisions is likewise straightforward.
First enumerate solutions to equation (46). For every solutioni; j; v, there is a uniquely determined solution
to z; y up to multiplicity m[T ] that might arise from differing initial digits in�(z; y). As before, we
must determine whether different choices of initial digits might lead to bothz andz + 1 being solutions.
This is straightforward. Each solutioni; j; v; z; y just enumerated must be extended. The issues related to
extensions are identical to the issues that arose in the enumeration ofC-B collisions. We leave details to the
reader.

Lastly, we need to enumerate cases where there have beenC-A, C-B and C-C collisions. We first
enumerate iteration points where there have beenC-A andC-C collisions as above. For every such solution,
we can uniquely solve forz; y, uniquely up to choice of initial digits. As usual, consideration must be given
to whether thereu andu� 1 are both solutions to equation (43) and to whetherz andz + 1 are both solutions
to equation (44). There are no novel issues that arise around extensions and so again we leave details to the
reader.
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